1 g u 0 1 2 u e 1 funzione di attivazione 1 1
play

] [ ( ) 1 = g u , 0 1 + 2 u e 1 Funzione di - PowerPoint PPT Presentation

Hopfield Model Continuous Case The Hopfield model can be generalized using continuous activation functions. More plausible model. In this case: ( ) = = + V g u g W V I i i ij j i j


  1. Hopfield Model – Continuous Case The Hopfield model can be generalized using continuous activation functions. More plausible model. In this case:   ( ) = = ∑ +   V g u g W V I β β i i ij j i   j where is a continuous, increasing, non linear function. g β Examples β − β − u u ] [ ( ) e e β = ∈ − tanh u 1 , 1 β − β + u u e e ] [ ( ) 1 = ∈ g u , 0 1 β − β + 2 u e 1

  2. Funzione di attivazione +1 ß > 1 ß = 1 ß < 1 -1 ( ) ( ) = β f x tanh x

  3. Updating Rules Several possible choices for updating the units : Asynchronous updating: one unit at a time is selected to have its output set Synchronous updating: at each time step all units have their output set Continuous updating: all units continuously and simultaneously change their outputs

  4. Continuous Hopfield Models Using the continuous updating rule, the network evolves according to the following set of (coupled) differential equations:   dV ( ) τ = − + = − + ∑ +   i V g u V g w V I β β i i i i ij j i   dt j τ τ where are suitable time constants ( > 0). i i ∀ i Note When the system reaches a fixed point ( dV dt / = 0 ) we get i ( ) = V g u β i i Indeed, we study a very similar dynamics ( ) du τ = − + + ∑ i u w g u I β i i ij j i dt j

  5. Modello di Hopfield continuo (energia) dV dE dV ( ) dV dV 1 1 − = − − + − ∑ ∑ ∑ ∑ j 1 i i i T V T V g V I β ij j ij i i i dt dt dt dt dt 2 2 ij ij i i   dV = − ∑ ∑ − +   i T V u I ij j i i   dt i j dV du = − τ ∑ i i i dt dt i 2   ( ) du ′ = − τ ≤ ∑   i g u 0 β i i   dt i τ > g Perché è monotona crescente e . 0 β i dE du = ⇔ = N.B. i 0 0 dt dt u cioè è un punto di equilibrio i

  6. The Energy Function As the discrete model, the continuous Hopfield network has an “energy” function, provided that W = W T : ( ) 1 − = − + − ∑∑ ∑ ∫ ∑ V i 1 E w V V g V dV I V β ij i j i i 0 2 i j i i Easy to prove that dE ≤ 0 dt with equality iff the net reaches a fixed point.

  7. Modello di Hopfield continuo (relazione con il modello discreto) Esiste una relazione stretta tra il modello continuo e quello discreto. Si noti che : ( ) ( ) ( ) = = β ≡ β V g u g u g u β i i i i 1 ( ) 1 − = β 1 u g V quindi : i i Il 2 o termine in E diventa : V i ( ) dV 1 − ∑ ∫ 1 g V β i i 0 L’integrale è positivo (0 se V i =0). β → ∞ Per il termine diventa trascurabile, quindi la funzione E del modello continuo diventa identica a quello del modello discreto

  8. Optimization Using Hopfield Network § Energy function of Hopfield network 1 = − − ∑ ∑ ∑ E w V V I V ij i j i i 2 i j i § The network will evolve into a (locally / globally) minimum energy state § Any quadratic cost function can be rewritten as the Hopfield network Energy function. Therefore, it can be minimized using Hopfield network. § Classical Traveling Salesperson Problem (TSP) § Many other applications • 2-D, 3-D object recognition • Image restoration • Stereo matching • Computing optical flow

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend