zonoids and sparsification of quantum measurements
play

Zonoids and sparsification of quantum measurements Guillaume AUBRUN - PowerPoint PPT Presentation

Zonoids and sparsification of quantum measurements Guillaume AUBRUN (joint with C ecilia Lancien) Universit e Lyon 1, France Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall ee, Juin 2015 1 / 16 Lyapounov convexity theorem Let :


  1. Zonoids and sparsification of quantum measurements Guillaume AUBRUN (joint with C´ ecilia Lancien) Universit´ e Lyon 1, France Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 1 / 16

  2. Lyapounov convexity theorem Let µ : (Ω , F ) be a vector measure, non-atomic. Then { µ ( A ) : A ∈ F} ⊂ R n is a convex set. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 2 / 16

  3. Lyapounov convexity theorem Let µ : (Ω , F ) be a vector measure, non-atomic. Then { µ ( A ) : A ∈ F} ⊂ R n is a convex set. Such convex sets are called zonoids. Equivalently, a zonoid is a limit of zonotopes. A zonotope is a finite Minkowski sum of segments. The Minkowski sum is A + B = { a + b : a ∈ A , b ∈ B } . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 2 / 16

  4. Lyapounov convexity theorem Let µ : (Ω , F ) be a vector measure, non-atomic. Then { µ ( A ) : A ∈ F} ⊂ R n is a convex set. Such convex sets are called zonoids. Equivalently, a zonoid is a limit of zonotopes. A zonotope is a finite Minkowski sum of segments. The Minkowski sum is A + B = { a + b : a ∈ A , b ∈ B } . Also: for a vector measure, the convex hull of the range is a zonoid. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 2 / 16

  5. Zonoids 1 The cube is a zonoid. 2 The octahedron is not a zonoid. 3 Any planar compact convex set with a center of symmetry is a zonoid. 4 The Euclidean ball B n 2 is a zonoid � B n 2 = α n S n − 1 [ − u , − u ] d σ ( u ) . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 3 / 16

  6. POVMs A Positive Operator-Valued Measure (POVM) is a vector measure M : (Ω , F ) → M + ( C d ) such that M (Ω) = Id . Here M + ( C d ) is the set of positive self-adjoint d × d matrices. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 4 / 16

  7. POVMs A Positive Operator-Valued Measure (POVM) is a vector measure M : (Ω , F ) → M + ( C d ) such that M (Ω) = Id . Here M + ( C d ) is the set of positive self-adjoint d × d matrices. POVMs corresponds to quantum measurements. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 4 / 16

  8. POVMs A Positive Operator-Valued Measure (POVM) is a vector measure M : (Ω , F ) → M + ( C d ) such that M (Ω) = Id . Here M + ( C d ) is the set of positive self-adjoint d × d matrices. POVMs corresponds to quantum measurements. We often consider the special case of discrete POVMs (=the purely atomic case). They are given by operators ( M 1 , . . . , M N ), where M i � 0 and M 1 + · · · + M N = Id . The range is �� � { M ( A ) ; A ∈ F} = M i : I ⊂ { 1 , . . . , N } . i ∈ I Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 4 / 16

  9. Zonoid associated to a POVM The convex hull of the range is a zonoid N � conv { M ( A ) ; A ∈ F} = [0 , M i ] . i =1 It is more natural to consider the 0-symmetric version N � K M = 2 conv { M ( A ) ; A ∈ F} − Id = [ − M i , M i ] i =1 This is a zonotope inside K = { A ∈ M + ( C d ) : � A � ∞ � 1. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 5 / 16

  10. Zonoid associated to a POVM The convex hull of the range is a zonoid N � conv { M ( A ) ; A ∈ F} = [0 , M i ] . i =1 It is more natural to consider the 0-symmetric version N � K M = 2 conv { M ( A ) ; A ∈ F} − Id = [ − M i , M i ] i =1 This is a zonotope inside K = { A ∈ M + ( C d ) : � A � ∞ � 1. Conversely, any zonoid inside K and containing ± Id comes from a POVM. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 5 / 16

  11. Support function Given a POVM M , the support function of the zonoid K M is a norm N � � ∆ � M = sup Tr(∆ A ) = | Tr ∆ M i | . A ∈ K M i =1 Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 6 / 16

  12. Support function Given a POVM M , the support function of the zonoid K M is a norm N � � ∆ � M = sup Tr(∆ A ) = | Tr ∆ M i | . A ∈ K M i =1 Note that the normed space ( M + ( C d ) , � · � M ) embeds into ℓ N 1 = ( R N , � · � 1 ) (another characterization of zonotopes/zonoids). Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 6 / 16

  13. Support function Given a POVM M , the support function of the zonoid K M is a norm N � � ∆ � M = sup Tr(∆ A ) = | Tr ∆ M i | . A ∈ K M i =1 Note that the normed space ( M + ( C d ) , � · � M ) embeds into ℓ N 1 = ( R N , � · � 1 ) (another characterization of zonotopes/zonoids). As we shall see this norm has a interpretation as distinguishability norms (Matthews–Wehner–Winter). Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 6 / 16

  14. State discrimination Let ρ, σ two quantum states on C d . A referee chooses ρ or σ with equal probability. You have to guess which was chosen using the POVM M with a single sample . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 7 / 16

  15. State discrimination Let ρ, σ two quantum states on C d . A referee chooses ρ or σ with equal probability. You have to guess which was chosen using the POVM M with a single sample . Born’s rule: if ρ was chosen, outcome i is output with probability Tr ρ M i ; if σ was chosen, outcome i is output with probability Tr σ M i . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 7 / 16

  16. State discrimination Let ρ, σ two quantum states on C d . A referee chooses ρ or σ with equal probability. You have to guess which was chosen using the POVM M with a single sample . Born’s rule: if ρ was chosen, outcome i is output with probability Tr ρ M i ; if σ was chosen, outcome i is output with probability Tr σ M i . The best strategy is of course, given the outcome, to guess the most likely state. The probability of error is N 1 � p = min(Tr ρ M i , Tr σ M i ) 2 i =1 N 1 2 − 1 � = | Tr ρ M i − Tr σ M i | 4 i =1 1 2 − 1 = 4 � ρ − σ � M Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 7 / 16

  17. The uniform POVM Let U d be the uniform POVM, defined on ( S C d , Borel ) by � U d ( A ) = d | ψ �� ψ | d σ ( ψ ) . A Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 8 / 16

  18. The uniform POVM Let U d be the uniform POVM, defined on ( S C d , Borel ) by � U d ( A ) = d | ψ �� ψ | d σ ( ψ ) . A We would like sparsifications of U d , i.e. POVMs M with as few outcomes as possible and such that (1 − ε ) � · � M � � · � U d � (1 + ε ) � · � M . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 8 / 16

  19. t -designs Start from the identity ( t ∈ N ) � 1 | ψ �� ψ | ⊗ t d σ = π := dim Sym t ( C d ) P Sym t ( C d ) . S C d Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 9 / 16

  20. t -designs Start from the identity ( t ∈ N ) � 1 | ψ �� ψ | ⊗ t d σ = π := dim Sym t ( C d ) P Sym t ( C d ) . S C d An ε -approximate t -design is a finitely supported measure µ on S C d such that � | ψ �� ψ | ⊗ t d µ � (1 + ε ) π. (1 − ε ) π � S C d Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 9 / 16

  21. t -designs Start from the identity ( t ∈ N ) � 1 | ψ �� ψ | ⊗ t d σ = π := dim Sym t ( C d ) P Sym t ( C d ) . S C d An ε -approximate t -design is a finitely supported measure µ on S C d such that � | ψ �� ψ | ⊗ t d µ � (1 + ε ) π. (1 − ε ) π � S C d Example : ε = 0 gives an exact integration formula (cubature formula) for homogeneous polynomial of degree t . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 9 / 16

  22. Sparsification from 4-designs Ambainis–Emerson (2007) showed that if µ is a (exact or approximate) 4-design, then the corresponding POVM M satisfies c � · � M � � · � U d � � · � M . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 10 / 16

  23. Sparsification from 4-designs Ambainis–Emerson (2007) showed that if µ is a (exact or approximate) 4-design, then the corresponding POVM M satisfies c � · � M � � · � U d � � · � M . Idea: the 1-norm can be controlled from 2- and 4-norms � X � 3 L 2 � � X � L 1 � � X � L 2 � X � 2 L 4 This approach requires card supp( µ ) � dim Sym t ( C d ) = Ω( d 4 ). Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 10 / 16

  24. Sparsification from 4-designs Ambainis–Emerson (2007) showed that if µ is a (exact or approximate) 4-design, then the corresponding POVM M satisfies c � · � M � � · � U d � � · � M . Idea: the 1-norm can be controlled from 2- and 4-norms � X � 3 L 2 � � X � L 1 � � X � L 2 � X � 2 L 4 This approach requires card supp( µ ) � dim Sym t ( C d ) = Ω( d 4 ). 2 ⊂ ℓ n 2 2 ⊂ ℓ n 2 Similar to Rudin (1960): ℓ n 4 isometrically and therefore ℓ n 1 with √ 3. Equivalently, gives a zonotope Z with n 2 summands such distortion √ that Z ⊂ B n 2 ⊂ 3 Z . Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 10 / 16

  25. Concentration of measure Rudin’s result can be improved via random constructions based on the concentration of measure phenomenon. Guillaume Aubrun (Lyon) Zonoids Marne-la-Vall´ ee, Juin 2015 11 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend