yue kin tsang
play

Yue-Kin Tsang Scripps Institution of Oceanography University of - PowerPoint PPT Presentation

Enstrophy-constrained stability analysis of -plane Kolmogorov flow with drag Yue-Kin Tsang Scripps Institution of Oceanography University of California, San Diego William R. Young Kolmogorov Flow t + u x + v y + x = +


  1. Enstrophy-constrained stability analysis of β -plane Kolmogorov flow with drag Yue-Kin Tsang Scripps Institution of Oceanography University of California, San Diego William R. Young

  2. Kolmogorov Flow ζ t + u ζ x + v ζ y + βψ x = − µζ + cos x + ν ∇ 2 ζ velocity: ( u , v ) = ( − ψ y , ψ x ) (2-D periodic domain) vorticity: ζ ( x , y ) = v x − u y = ∇ 2 ψ Kolmogorov flow: sinusoidal forcing (single scale)

  3. Kolmogorov Flow ζ t + u ζ x + v ζ y + βψ x = − µζ + cos x + ν ∇ 2 ζ velocity: ( u , v ) = ( − ψ y , ψ x ) (2-D periodic domain) vorticity: ζ ( x , y ) = v x − u y = ∇ 2 ψ Kolmogorov flow: sinusoidal forcing (single scale) µ = bottom drag quasi-2D experiments: friction from the container walls or surrounding air geophysical flows: Ekman friction

  4. Kolmogorov Flow ζ t + u ζ x + v ζ y + βψ x = − µζ + cos x + ν ∇ 2 ζ velocity: ( u , v ) = ( − ψ y , ψ x ) (2-D periodic domain) vorticity: ζ ( x , y ) = v x − u y = ∇ 2 ψ Kolmogorov flow: sinusoidal forcing (single scale) µ = bottom drag quasi-2D experiments: friction from the container walls or surrounding air geophysical flows: Ekman friction β = gradient of Coriolis parameter along y important in differentially rotating systems

  5. Stability of the Laminar Solution ζ L ( x ) = a cos( x − x β ) x β = tan − 1 β 1 a = , β 2 + µ 2 µ � 10 1 5 0.5 y y 0 0 −0.5 −5 −1 −10 x x µ = 0 . 5 β = 1 . 0 µ = 0 . 1 β = 0 . 0

  6. Stability of the Laminar Solution ζ L ( x ) = a cos( x − x β ) x β = tan − 1 β 1 a = , β 2 + µ 2 µ � 10 1 5 0.5 y y 0 0 −0.5 −5 −1 −10 x x µ = 0 . 5 β = 1 . 0 µ = 0 . 1 β = 0 . 0

  7. Stability of the Laminar Solution ζ L ( x ) = a cos( x − x β ) x β = tan − 1 β 1 a = , β 2 + µ 2 µ � 10 1 5 0.5 y y 0 0 −0.5 −5 −1 −10 x x µ = 0 . 5 β = 1 . 0 µ = 0 . 1 β = 0 . 0 stable unstable

  8. Goal: Neutral Curve ∇ 2 ψ t + J ( ψ, ∇ 2 ψ ) + βψ x = − µ ∇ 2 ψ + cos x STABLE β UNSTABLE 0 µ

  9. Stability Analysis ψ ( x , y , t ) = ψ L ( x ) + ϕ ( x , y , t ) Linear Instability assume infinitesimal disturbance ϕ ∼ e − i ω t ℑ{ ω } > 0 ⇒ ψ L is unstable gives sufficient condition for instability Global Stability (Asymptotic Stability) ϕ is not assumed to be small disturbance energy E ϕ ( t ) = 1 � |∇ ϕ | 2 � → 0 t → ∞ as 2 gives sufficient condition for stability

  10. Energy Method dE ϕ � � a R [ ϕ ] − µ dt = 2 E ϕ Φ � � ϕ x ϕ y cos x R [ ϕ ] ≡ where � |∇ ϕ | 2 � ϕ ( t ) R ∗ ≡ max Now define ϕ ∈ Φ R [ ϕ ] Φ : set of all functions satisfying periodic boundary conditions E ϕ ( t ) < E ϕ (0) e 2( a R ∗ − µ ) t → 0 a R ∗ − µ < 0 Then, if Neutral condition � R 2 a = 1 ∗ µ 2 − µ 2 ⇒ µ β = R ∗

  11. An Optimization Problem � � ϕ x ϕ y cos x R [ ϕ ] ≡ Maximize: over the set Φ . � |∇ ϕ | 2 � Optimal solution R ∗ = R [ ϕ ∗ ] = 1 2 � � l →∞ cos � l ( y + sin x ) � exp l ϕ ∗ ( x , y ) ≈ lim 2 cos 2 x y x

  12. Energy Stability Curve � 1 4 µ 2 − µ 2 β = ( a = 2 µ ) 3 Energy stability 2 STABLE ( a < 2 µ ) β C 1 ? ( a > 2 µ ) B D 0 0.0 0.2 0.4 0.6 0.8 µ

  13. Energy Stability and Linear Stability Curve � 1 4 µ 2 − µ 2 β = ( a = 2 µ ) 3 Energy stability Linear stability 2 STABLE β 1 ? UNSTABLE B 0 0.0 0.2 0.4 0.6 0.8 µ

  14. Limitations of the Energy Method requires E ϕ ( t ) to decrease monotonically for all ϕ , thus excludes transient growth of E ϕ ( t ) E ϕ 0 t the most efficient energy -releasing disturbance ϕ ∗ ( x , y ) is unphysical: l → ∞ a gap between the energy stability curve and the neutral curve from linear stability analysis

  15. Energy-Enstrophy Balance � ( ∇ 2 ϕ ) 2 � Disturbance enstrophy: Z ϕ = 1 2 d dt ( E ϕ − Z ϕ ) = − 2 µ ( E ϕ − Z ϕ ) t → ∞ E ϕ = Z ϕ as 1.0 Φ ϕ ( t ) 0.5 Z ϕ Φ EZ : E ϕ = Z ϕ µ β 0.40 , 0.00 0.61 , 0.00 0.0 0.0 0.1 0.2 0.3 0.4 0.5 E ϕ

  16. Optimization with Constraints � � ϕ x ϕ y cos x R [ ϕ ] ≡ Maximize: � |∇ ϕ | 2 � � |∇ ϕ | 2 � = � ( ∇ 2 ϕ ) 2 � with constraint Optimal solution R ∗ = R [ ϕ ∗ ] = 0 . 3571 e i l y ˜ � � ϕ ∗ ( x , y ) = ℜ l ≈ 0 . 4166 ϕ ( x ) with x y

  17. Energy-Enstrophy (EZ) Stability � 0 . 13 µ 2 − µ 2 ( a = 2 . 8 µ ) β = 3 EZ stability Energy stability Linear stability 2 STABLE β C 1 ? UNSTABLE B D 0 0.0 0.2 0.4 0.6 0.8 µ

  18. Energy-Enstrophy (EZ) Stability 2 � 0 . 13 µ 2 − µ 2 ( a = 2 . 8 µ ) β = E ϕ 3 1 EZ stability Energy stability Linear stability 0 0 5 10 time 2 STABLE β C 1 1 E ϕ ? UNSTABLE B D 0 0.0 0.2 0.4 0.6 0.8 0 0 2 4 time µ

  19. Summary E ϕ ( t ) = Z ϕ ( t ) as t → ∞ , Based on the observation: we develop the Energy -Enstrophy (EZ) stability method which allows transient growth in E ϕ ( t ) ( ϕ ( t = 0) � Φ EZ ) identifies a physically realistic most-unstable disturbance lies closer to the linear stability neutral curve 3 EZ stability Energy stability Linear stability 2 STABLE β C 1 ? UNSTABLE B D 0 0.0 0.2 0.4 0.6 0.8 µ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend