xiv arithmetic hierarchy
play

XIV. Arithmetic Hierarchy Yuxi Fu BASICS, Shanghai Jiao Tong - PowerPoint PPT Presentation

XIV. Arithmetic Hierarchy Yuxi Fu BASICS, Shanghai Jiao Tong University We introduce a hierarchy of sets in terms of logical formula and prove its relationship to the hierarchy 0 , 0 , 0 , . . . of Turing degree. Computability Theory,


  1. XIV. Arithmetic Hierarchy Yuxi Fu BASICS, Shanghai Jiao Tong University

  2. We introduce a hierarchy of sets in terms of logical formula and prove its relationship to the hierarchy 0 , 0 ′ , 0 ′′ , . . . of Turing degree. Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 1 / 32

  3. Synopsis 1. Arithmetic Hierarchy 2. Post Theorem 3. Σ n -Complete Set 4. Relative Arithmetic Hierarchy Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 2 / 32

  4. Arithmetic Hierarchy Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 3 / 32

  5. Arithmetic Hierarchy A set B is in Σ 0 (Π 0 ) if B is recursive. A set B is in Σ n , where n ≥ 1, if there is a recursive relation R ( x , y 1 , y 2 , . . . , y n ) such that x ∈ B iff ∃ y 1 . ∀ y 2 . ∃ y 3 . . . . Q n y n . R ( x , y 1 , y 2 , . . . , y n ) . A set B is in Π n , where n ≥ 1, if there is a recursive relation R ( x , y 1 , y 2 , . . . , y n ) such that x ∈ B iff ∀ y 1 . ∃ y 2 . ∀ y 3 . . . . Q n y n . R ( x , y 1 , y 2 , . . . , y n ) . ∆ n = Σ n ∩ Π n . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 4 / 32

  6. Arithmetic Set B is arithmetical if B ∈ � n ∈ ω (Σ n ∪ Π n ). Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 5 / 32

  7. Basic Property Theorem . The following hold: (i) A ∈ Σ n iff A ∈ Π n . (ii) If A ∈ Σ n (Π n ) then ∀ m > n . A ∈ Σ m ∩ Π m . (iii) If A , B ∈ Σ n (Π n ) then A ∪ B , A ∩ B ∈ Σ n (Π n ). (iv) If R ∈ Σ n ∧ n > 0 ∧ A = { x : ( ∃ y ) R ( x , y ) } then A ∈ Σ n . (v) If B ≤ m A ∧ A ∈ Σ n then B ∈ Σ n . (vi) If R ∈ Σ n (Π n ) and A , B are defined by � x , y � ∈ A ⇔ ∀ z < y . R ( x , y , z ) , � x , y � ∈ B ⇔ ∃ z < y . R ( x , y , z ) , then A , B ∈ Σ n (Π n ). Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 6 / 32

  8. Fin ∈ Σ 2 Fact . Fin ∈ Σ 2 . x ∈ Fin ⇔ W x is finite ⇔ ∃ s . ∀ t . ( t ≤ s ∨ W x , t = W x , s ) . Fact . Inf ∈ Π 2 . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 7 / 32

  9. Cof ∈ Σ 3 Fact . Cof ∈ Σ 3 . x ∈ Cof ⇔ W x is finite ⇔ ∃ y . ∀ z . ( z ≤ y ∨ z ∈ W x ) ⇔ ∃ y . ∀ z . ∃ s . ( z ≤ y ∨ z ∈ W x , s ) . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 8 / 32

  10. Tot ∈ Π 2 Fact . {� x , y � | W x ⊆ W y } ∈ Π 2 . W x ⊆ W y ⇔ ∀ z . ( z ∈ W x ⇒ z ∈ W y ) ⇔ ∀ z . ( z / ∈ W x ∨ z ∈ W y ) ⇔ ∀ z . ( ∀ s . z / ∈ W x , s ∨ ∃ t . z ∈ W y , t ) ⇔ ∀ z . ∀ s . ∃ t . ( z / ∈ W x , s ∨ z ∈ W y , t ) � � ⇔ ∀ w . ∃ t . ( w ) 0 / ∈ W x , ( w ) 1 ∨ ( w ) 0 ∈ W y , t . Fact . {� x , y � | W x = W y } ∈ Π 2 . Fact . Tot = { x | W x = ω } ∈ Π 2 . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 9 / 32

  11. Rec ∈ Σ 3 Fact . Rec ∈ Σ 3 . x ∈ Rec ⇔ W x is recursive ⇔ ∃ y . � � W x = W y ⇔ ∃ y . ( W x ∩ W y = ∅ ∧ W x ∪ W y = ω ) ⇔ ∃ y . (( ∀ s . W x , s ∩ W y , s = ∅ ) ∧ ( ∀ z . ∃ s . z ∈ W x , s ∪ W y , s )) . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 10 / 32

  12. Ext ∈ Σ 3 Fact . Ext ∈ Σ 3 . x ∈ Ext ⇔ ∃ y . ( φ x ⊆ φ y ∧ W y = ω ) ⇔ ∃ y . ∀ z . ∃ s . ∃ t . (( z / ∈ W x , s ∨ φ x , s ( z ) = φ y , s ( z )) ∧ z ∈ W y , t ) . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 11 / 32

  13. Crt ∈ Σ 3 Fact . Crt = { x | W x is creative } ∈ Σ 3 . x ∈ Crt ⇔ W x is productive � � ⇔ ∃ y . ∀ z . W z ⊆ W x ⇒ ( φ y ( z ) ↓ ∧ φ y ( z ) ∈ W x \ W z ) ⇔ ∃ y . ∀ z . ( W z ∩ W x = ∅ ⇒ ( φ y ( z ) ↓ ∧ φ y ( z ) / ∈ W x ∪ W z )) ⇔ ∃ y . ∀ z . ( W z ∩ W x � = ∅ ∨ ( φ y ( z ) ↓ ∧ φ y ( z ) / ∈ W x ∪ W z )) Now W z ∩ W x � = ∅ iff ∃ s . W z , s ∩ W x , s � = ∅ , and φ y ( z ) ↓ ∧ φ y ( z ) / ∈ W x ∪ W z iff ∃ s . z ∈ W y , s ∧ ∀ s . ( z / ∈ W y , s ∨ φ y , s ( z ) / ∈ W x , s ∪ W z , s ) . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 12 / 32

  14. Let P TM be { x | P x runs in polynomial time } . ∃ c . ∀ z . ( P x ( z ) terminates in cz c ) x ∈ P TM ⇔ Hence P TM ∈ Σ 2 . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 13 / 32

  15. Post Theorem Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 14 / 32

  16. Completeness A set A ∈ Σ n is Σ n -complete if B ≤ 1 A for every B ∈ Σ n . A set A ∈ Π n is Π n -complete if B ≤ 1 A for every B ∈ Π n . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 15 / 32

  17. Post Theorem (i) B ∈ Σ n +1 iff B is r.e. in a Π n set iff B is r.e. in a Σ n set. Proof. If B ∈ Σ n +1 , then x ∈ B iff ∃ y . R ( x , y ) for some R ∈ Π n . So B is r.e. in {� x , y � | R } ∈ Π n . Suppose B is r.e. in some C ∈ Π n . Then for some e , x ∈ B iff x ∈ W C e iff ∃ s . ∃ σ. ( σ ⊂ C ∧ x ∈ W σ e , s ) . Now x ∈ W σ e , s is recursive, and σ ⊂ C is C -recursive since σ ⊂ C ∀ y < | σ | . ( σ ( y ) = 1 ∧ y ∈ C ∨ σ ( y ) = 0 ∧ y / ∈ C ) . iff Hence B ∈ Σ n +1 . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 16 / 32

  18. Post Theorem (ii) ∅ ( n ) is Σ n -complete for all n > 0. Proof. ∅ ′ = K is Σ 1 -complete. Now assume ∅ ( n ) is Σ n -complete. Then B ∈ Σ n +1 iff B is r . e . in some Σ n set B is r . e . in ∅ ( n ) iff B ≤ 1 ∅ ( n +1) . iff Hence ∅ ( n +1) is Σ n +1 -complete. Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 17 / 32

  19. Post Theorem (iii) B ∈ Σ n +1 iff B is r.e. in ∅ ( n ) . (iv) B ∈ ∆ n +1 iff B ≤ T ∅ ( n ) . Proof. We have the following equivalence: B ∈ ∆ n +1 B , B ∈ Σ n +1 iff B , B are r . e . in ∅ ( n ) iff B ≤ T ∅ ( n ) . iff Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 18 / 32

  20. Hierarchy Theorem . ∀ n > 0 . ∆ n ⊂ Σ n ∧ ∆ n ⊂ Π n . Proof. ∅ ( n ) ∈ Σ n \ Π n and ∅ ( n ) ∈ Π n \ Σ n . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 19 / 32

  21. A Comment on Completeness B ≤ m ∅ ( n ) ⇒ B ∈ Σ n B is r . e . in ∅ ( n − 1) ⇒ B ≤ 1 ∅ ( n ) ⇒ B ≤ m ∅ ( n ) . ⇒ The following is the relativized version of “ K ≤ m A iff K ≤ 1 A ”: ∅ ( n ) ≤ m A iff ∅ ( n ) ≤ 1 A . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 20 / 32

  22. Σ n -Complete Set Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 21 / 32

  23. Let ( A 1 , A 2 ) and ( B 1 , B 2 ) be two pairs of sets such that A 1 ∩ A 2 = ∅ and B 1 ∩ B 2 = ∅ . Then ( A 1 , A 2 ) ≤ m ( B 1 , B 2 ) if there is a recursive function f such that f ( A 1 ) ⊆ B 1 , f ( A 2 ) ⊆ B 2 and f ( A 1 ∪ A 2 ) ⊆ B 1 ∪ B 2 . We write ( A 1 , A 2 ) ≤ 1 ( B 1 , B 2 ) if f is one-one. For n > 0 we write (Σ n , Π n ) ≤ m ( C , D ) if ( A , A ) ≤ m ( C , D ) for some Σ n -complete set A . The notation (Σ n , Π n ) ≤ 1 ( C , D ) is defined similarly. Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 22 / 32

  24. Fin is Σ 2 -Complete, Tot is Π 2 -Complete Theorem . (Σ 2 , Π 2 ) ≤ 1 ( Fin , Tot ). Proof. Fin ∈ Σ 2 and Tot ∈ Π 2 . Let A be in Σ 2 . There is a recursive relation R such that x ∈ A iff ∀ y . ∃ z . R ( x , y , z ) . By S-m-n Theorem there is a one-one recursive function s s.t. � 0 , if ∀ y ≤ u . ∃ z . R ( x , y , z ) , φ s ( x ) ( u ) = ↑ , otherwise . Now x ∈ A ⇒ W s ( x ) = ω ⇒ s ( x ) ∈ Tot and x ∈ A ⇒ W s ( x ) is finite ⇒ s ( x ) ∈ Fin . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 23 / 32

  25. Cof and Rec are Σ 3 -Complete Let Cmp be { x | W x ≡ T K } , the set of Turing complete r.e. sets. Theorem . (Σ 3 , Π 3 ) ≤ 1 ( Cof , Cmp ) ≤ 1 ( Rec , Cmp ). Corollary . Cof is Σ 3 -complete. Corollary . (Rogers) Rec is Σ 3 -complete. Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 24 / 32

  26. (Σ 3 , Π 3 ) ≤ 1 ( Cof , Cmp ) Fix an A ∈ Σ 3 . Then some R ∈ Π 2 exists such that x ∈ A iff ∃ y . R ( x , y ) . Since Inf is Π 2 -complete, a one-one recursive function g exists s.t. R ( x , y ) iff W g ( x , y ) is infinite . s ∈ ω W s We will construct an r.e. set W f ( x ) = � f ( x ) in stages s.t. x ∈ A iff W f ( x ) is cofinite . Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 25 / 32

  27. (Σ 3 , Π 3 ) ≤ 1 ( Cof , Cmp ) Let the elements of the cofinite set W s f ( x ) be denoted by b s x , 0 < b s x , 1 < b s x , 2 < . . . < b s x , k < . . . . Let W 0 f ( x ) := ∅ . Let W s +1 x , k in W s +1 f ( x ) := W s f ( x ) . Additionally put b s f ( x ) if k ≤ s and W g ( x , k ) , s � = W g ( x , k ) , s +1 ∨ k ∈ K s +1 \ K s . So we have constructed some programme P f ( x ) that enumerates W f ( x ) , from which we can calculate f ( x ). Computability Theory, by Y. Fu XIV. Arithmetic Hierarchy 26 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend