with classical methods
play

with classical methods Visualisations Introduction The first - PowerPoint PPT Presentation

with classical methods Visualisations Introduction The first problem Problem The second problem Given Problems Analysis Simplification Classification Discussion Complex Handling Lagrangian


  1. with classical methods

  2.  Visualisations  Introduction ▪ The first problem  Problem ▪ The second problem  Given Problems  Analysis  Simplification  Classification  Discussion  Complex Handling  Lagrangian  Conclusion  Constants of motion  Classic Approximations  dr/dt  Bizarre Characteristics  Solution  Series Solution ▪ t(r) ▪ phi(r)

  3.  Quamvis movet! (E pur si muove!)  Galilaeo Galilaei  Quamvis trahitur! (However, attracted)  Issaco Newtono  Quamvis procedit! (However, proceed)  Alberto Einsteino

  4.    2 2 r r              2 2 2 2 dtL mc dt f ( r ) sin 2 2 c f ( r ) c r   1  c f ( r ) r 2    r     c f ( r ) 1   2 r

  5.      2 2  2 2 2 r r r r               2 2 2 2 2 L mc f ( r ) sin mc f ( r ) 2 2 2 2 c f ( r ) c c f ( r ) c Assumption     2 2 2 r r      L ' f ( r ) 2 2 c f ( r ) c 2

  6.  What this action means?

  7.  Schwarzschild Solution  Non-rotating non-charged solution  Reissner-Nordstrom Solution  Non-rotating charged solution

  8.    d L     0      dt    2 L mr     p    L '  2 r  f ( r ) 2 c f ( r )   L ' 2 p   1 2 2 2 m c r 2 mc       H p q L f ( r ) i i L ' i

  9. 2 p   1 2 2 2 m c r  2 H ( r , p ) mc f r  2 r  f 2 c f    2 6 3 p m c f       2 2 2 r c f 1   2 2 2 2   H m c r

  10. dt dr        t ( r ) dt dr   dr r   2       2 2 2 4 2 4 p p 1 m c 3 m c               1 1 1 f f       2 2 2 2 2 2 2 2   2 H m c r 8 H m c r             dr   cf        Expanding, r     2   2 2 4 4 8 4 7 2 4 c p r m c 3 m c r 3 r m c log r 3 m c                      s c t 1 ... log r r 1     s 2 4 4 2 2       c 2 H 8 H c 8 H 2 H r 2 H   r 0   r   4 7 r r 3 r m c log r c       2 2 2 2 s c   log r r m c r p  s 4 2   c c 8 H 2 H r r 0

  11.         1 m H r 1 , p 0 m H r p   c c 30 40 20 30 10 20 10 1 2 3 4 5 6 10 0 1 2 3 4 5 6

  12.         1 m H r 1 , p 0 m H r p   c c 10 10 5 5 1 2 3 4 5 6 1 2 3 4 5 6 5 5 10 10

  13. dt      d L ' dt L ' ( r ) dr dr

  14.         1 m H r 1 , p 0 m H r p   c c 2 4 6 8 10 2 4 6 8 10 2 2 4 4 6 6 8 8 10 10 12 12 14 14

  15.         1 m H r 1 , p 0 m H r p   c c 10 10 5 5 2 4 6 8 10 2 4 6 8 10 5 5 10 10

  16.   p L ' ( r )       dr dr  2  r mr r

  17.  See Octave

  18.     H K V K V , r r eff     r     d L dr L L    r  r            K p dr dt r r dt        r            dt r dt r r r 0 r 0   r 0 2 2 p GMp GMm       V eff , r 2 2 3 r 3 mr mc r

  19.     cos x yi cos x cosh y i sin x sinh y  See the comparison of the inside orbit with two different complex realisations.

  20.  Apparently, the right choice of the Lagrangian gives the right result, and vice versa.  At least, from the inside result, the implication of new concept is required.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend