what is the euler characteristic of moduli space
play

What is the Euler characteristic of moduli space ? Compactified - PowerPoint PPT Presentation

Illustration The Gauss-Bonnet theorem for cone manifolds F and volumes of moduli spaces Curtis McMullen Avg of |F | 2 in the hyperbolic metric? Holomorphic Galois conjugation Answer: 1/3 Kappes--Mller (2012) Thurston


  1. Illustration The Gauss-Bonnet theorem for cone manifolds F and volumes of moduli spaces Γ Γ′ Curtis McMullen Avg of |F ′ | 2 in the hyperbolic metric? Holomorphic Galois conjugation Answer: 1/3 Kappes--Möller (2012) Thurston (1998) 5 5/2 F Allendoerfer--Weil (1943) 1-1 ∞ 2 ∞ 2 orbifold cone manifold Schwarz, Picard, Deligne--Mostow, Cohen--Wolfart, Parker, Sauter,.... -1+1/2+1/5 = -3/10 -1+1/2+2/5 = -1/10 What is the Euler characteristic of moduli space ? Compactified moduli space ? n 3 4 5 6 7 C n : b i 6 = b j } / Aut b M 0 ,n = { ( b 1 , . . . , b n ) 2 b C χ ( M 0 ,n ) 1 -1 2 -6 24 manifold Σ 0 ,n − 1 → M 0 ,n 1 2 7 34 213 χ ( M 0 ,n ) Fibration χ ( Σ 0 ,n − 1 ) = − ( n − 3) M 0 ,n − 1 Example: n=5 χ ( M 0 ,n ) = ( − 1) n +1 ( n − 3)! χ ( P 1 × P 1 − 7 P 1 + 12 P 0 ) = 4 − 14 + 12 = 2 Theorem M 0 ,n 6 = CH n − 3 / Γ for n>4. χ ( P 1 × P 1 + 3 P 1 − 3 P 0 ) = 4 + 6 − 3 = 7

  2. Generating functions Moduli spaces of polyhedra... Fix µ 1 , . . . , µ n , 0 < µ i < 1 , P µ i = 2. Corollary 2 (Getzler) The generating functions Any ( b i ) determines a meromorphic 1-form on b C : ∞ χ ( M 0 ,n +1 ) x n ∞ χ ( M 0 ,n +1 ) x n � � f ( x ) = x − g ( x ) = x + and dx n ! n ! X ω = ( ω ) = µ i b i Q n n =2 n =2 1 ( x − b i ) µ i divisor of degree 2 are formal inverses of one another. ( b = convex polyhedron in R 3 C , | ω | ) ∼ Universal; via stable trees (M, L’Ens. math.) Cone angles 2 π (1 − µ i ). Example: n=12, μ i = 1/6 n=4 n=5 Example: μ = (7,7,7,7,8)/18 ... are complex hyperbolic after all 8 M 0 , 5 → M g , g = 25 M 0 ,n ( µ ) = moduli space of cone metrics on S 2 with given angles X : y 18 = ( x − b 1 ) · · · ( x − b 4 ) 7 7 Z / 18 acts on H 1 ( X ) 7 7 Theorem: M 0 ,n ( µ ) is naturally a complex hyperbolic manifold [ ω ] = [ dx/y 7 ] ∈ H 1 ( X ) q 7/18 (locally CH n − 3 , via periods of ω ) q = ζ − 7 18 ( b i ) 7! (positive line in C 1 , 2 ) ⇠ = CH 2 Schwarz, Picard, Deligne-Mostow, Thurston, 1986 Math Olympiad Also get rep of braid group B 4 → U(1,2) Signature (1,2) (Burau)

  3. What is the volume of moduli space ? Cone manifolds § Example: Glue together spherical polyhedra along Theorem 1.2 The complex hyperbolic volume of moduli space satisfies faces in pairs. � | B | − 1 � � � � ( − 1) |P| +1 ( |P| − 3)! vol( M 0 ,n , g µ ) = C n − 3 max 0 , 1 − µ i . P B ∈ P i ∈ B Thurston: P : partitions of { 1 , . . . , n } into blocks B . The metric completion M 0 ,n ( µ ) is a CH n − 3 cone manifold. special cases (different methods): Parker, Sauter Gauss-Bonnet (M): .1 A compact cone–manifold of dimension n satisfies � � Ψ ( x ) dv ( x ) = χ ( M σ ) Θ σ . M [ n ] σ Proof of volume formula Proof of cone GB uses polyhedral GB... 1943 GB Theorem 2.1 (Allendoerfer–Weil) The Euler characteristic of a com- � Volume = ) = χ ( M σ ) Θ σ . pact Riemannian polyhedron M of dimension n satisfies σ n − 1 � � � ( − 1) n χ ′ ( M ) = � Ψ ( x ) dv ( x ) + dv ( x ) N ( x ) ∗ Ψ ( x, ξ ) d ξ . � | B | − 1 � M [ n ] M [ r ] r =0 = � ( − 1) |P| +1 ( |P| − 3)! � � max 0 , 1 − µ i . Riemann curvature tensor by 3 P B ∈ P i ∈ B � Ψ ( x ) = 2 1 � ( i ) � ( j ) � � � · R i 1 i 2 j 1 j 2 · · · R i n − 1 i n j n − 1 j n . 2 n/ 2 n ! g ω n i,j ∈ S n 8 intrinsic K bundle to A defined by 7 7 (7+7,7,7,8) contributes a � Ψ ( x, ξ ) = Ψ r,f ( x, ξ ) , where 0 ≤ 2 f ≤ r stratum ≃ M 0,4. 14 2 1 � ( i ) � ( j ) 7 7 � Ψ r,f ( x, ξ ) = · 2 f (2 f )!( r − 2 f )! · × ω 2 f ω n − 2 f − 1 γ i,j ∈ S r no stratum unless P B µ i < 1. R i 1 i 2 j 1 j 2 · · · R i 2 f − 1 i 2 f j 2 f − 1 j 2 f Λ i 2 f +1 j 2 f +1 ( ξ ) · · · Λ i r j r ( ξ ) . extrinsic K

  4. Example: μ = (7,7,7,7,8)/18 (continued) ...which in turns comes from Weyl’s tube formula. → 1939 16 8 Galois 5 5 T[r] 7 7 M[r] 5 5 7 7 M[n] 5/18 q = ζ − 5 18 7/18 q = ζ − 7 18 Figure 1. The tube around a polyhedron in R N +1 . Signature (1,2) Signature (1,2) Non-arithmetic lattices (DM) Invariants 16 8 Kappes-Möller 5 7 5 7 ρ ( µ, µ 0 ) = vol( M 0 ,n ( µ 0 )) 10 The volume ratios 14 5 5 7 7 vol( M 0 ,n ( µ )) (18-10)/36 = 2/9 (18-14)/36 = 1/9 are the same for all subgroups of finite index in Γ . M 0 ,n M 0 ,n ( µ 0 ) M 0 ,n ( µ ) cone manifold The 16 nonarithmetic lattices arising orbifold from moduli spaces holonomy Γ 0 = CH 2 / Γ ∼ fall into 9 commensurability classes. = ( Γ 0 dense) in U (1 , 2). ( Γ discrete) ∼ Γ is a nonarithmetic lattice

  5. Volume ratios: examples q ( p i ) χ ( P ( µ )) χ ( M ( µ )) 94 orbifolds ( p i ) χ ( P ( µ )) χ ( M ( µ )) q 3 1 1 1 1 1 1 -4/9 -1/1620 9 4 4 4 4 2 13/27 13/648 3 2 1 1 1 1 1/3 1/72 10 7 4 4 4 1 3/20 1/40 4 1 1 1 1 1 1 1 1 -15/64 -1/172032 10 3 3 3 3 3 3 2 293/1000 293/720000 q ( p i ) { ρ ( µ, ν ) } 4 2 1 1 1 1 1 1 25/128 5/18432 10 6 3 3 3 3 2 -26/125 -13/1500 4 3 1 1 1 1 1 -1/16 -1/1920 10 9 3 3 3 2 3/100 1/200 4 2 2 1 1 1 1 -1/4 -1/192 10 6 6 3 3 2 3/10 3/40 12 7 5 3 3 3 3 1/93 4 3 2 1 1 1 3/16 1/32 10 5 3 3 3 3 3 -17/50 -17/6000 4 2 2 2 1 1 3/8 1/32 10 8 3 3 3 3 3/25 1/200 5 2 2 2 2 2 3/5 1/200 10 6 5 3 3 3 39/100 13/200 12 8 7 3 3 3 1/13 6 1 1 1 1 1 1 1 1 1 1 1 1 -28315/419904 -809/5746705367040 12 8 5 5 5 1 7/48 7/288 6 2 1 1 1 1 1 1 1 1 1 1 5663/93312 809/48372940800 12 7 7 2 2 2 2 2 575/10368 115/497664 6 3 1 1 1 1 1 1 1 1 1 -119/3888 -17/201553920 12 9 7 2 2 2 2 -23/432 -23/10368 12 6 5 5 4 4 1/13 6 2 2 1 1 1 1 1 1 1 1 -287/4374 -41/50388480 12 7 7 4 2 2 2 -23/216 -23/2592 6 4 1 1 1 1 1 1 1 1 49/5832 7/33592320 12 11 7 2 2 2 1/48 1/288 6 3 2 1 1 1 1 1 1 1 2107/46656 301/33592320 12 9 9 2 2 2 1/8 1/96 12 7 6 5 3 3 1/17 6 5 1 1 1 1 1 1 1 -1/1296 -1/6531840 12 9 7 4 2 2 7/48 7/96 6 2 2 2 1 1 1 1 1 1 637/7776 637/33592320 12 7 7 6 2 2 1/6 1/24 6 4 2 1 1 1 1 1 1 -13/648 -13/466560 18 13 7 7 7 2 1/16 12 7 7 4 4 2 7/24 7/96 6 3 3 1 1 1 1 1 1 -11/216 -11/311040 12 7 5 3 3 3 3 -31/144 -31/3456 6 3 2 2 1 1 1 1 1 -91/1296 -91/311040 12 5 5 5 3 3 3 -23/72 -23/2592 6 5 2 1 1 1 1 1 5/1296 1/31104 18 8 7 7 7 7 1/16 12 10 5 3 3 3 1/12 1/72 6 4 3 1 1 1 1 1 55/1296 11/31104 12 8 7 3 3 3 13/48 13/288 6 2 2 2 2 1 1 1 1 -13/108 -13/62208 12 8 5 5 3 3 7/24 7/96 6 4 2 2 1 1 1 1 5/108 5/5184 20 14 11 5 5 5 1/33, 4/33 12 7 6 5 3 3 17/48 17/96 6 3 3 2 1 1 1 1 55/648 55/31104 12 6 5 5 5 3 1/2 1/12 6 5 3 1 1 1 1 -1/54 -1/1296 12 7 5 4 4 4 11/24 11/144 6 4 4 1 1 1 1 -2/27 -1/648 20 10 9 9 6 6 1/33, 4/33 12 6 5 5 4 4 13/24 13/96 6 3 2 2 2 1 1 1 55/432 55/15552 12 5 5 5 5 4 7/12 7/288 6 5 2 2 1 1 1 -1/54 -1/648 14 11 5 5 5 2 6/49 1/49 6 4 3 2 1 1 1 -5/54 -5/324 20 13 9 6 6 6 1/46 14 8 5 5 5 5 24/49 1/49 6 3 3 3 1 1 1 -1/9 -1/324 15 8 6 6 6 4 37/75 37/450 6 5 4 1 1 1 1/12 1/72 6 2 2 2 2 2 1 1 5/24 1/1152 18 11 8 8 8 1 13/108 13/648 12 7 5 4 4 4 1/22 18 13 7 7 7 2 4/27 2/81 6 4 2 2 2 1 1 -1/9 -1/108 18 10 10 7 7 2 13/54 13/216 6 3 3 2 2 1 1 -5/27 -5/216 6 5 3 2 1 1 1/12 1/24 18 14 13 3 3 3 13/108 13/648 24 19 17 4 4 4 1/22 18 10 7 7 7 5 13/27 13/162 6 4 4 2 1 1 1/6 1/24 6 4 3 3 1 1 1/6 1/24 18 8 7 7 7 7 16/27 2/81 6 3 2 2 2 2 1 -5/18 -5/432 20 14 11 5 5 5 99/400 33/800 24 14 9 9 9 7 1/22 6 5 2 2 2 1 1/12 1/72 20 13 9 6 6 6 69/200 23/400 6 4 3 2 2 1 1/4 1/8 20 10 9 9 6 6 99/200 99/800 6 3 3 3 2 1 1/3 1/18 24 19 17 4 4 4 11/96 11/576 15 8 6 6 6 4 1/37, 4/37 6 3 3 2 2 2 1/2 1/24 24 14 9 9 9 7 11/24 11/144 8 3 3 3 3 3 1 -33/128 -11/5120 30 26 19 5 5 5 4/75 2/225 8 6 3 3 3 1 9/64 3/128 30 23 22 5 5 5 37/300 37/1800 30 23 22 5 5 5 1/37, 4/37 8 5 5 2 2 2 9/32 3/128 30 22 11 9 9 9 16/75 8/225 8 4 3 3 3 3 9/16 3/128 42 34 29 7 7 7 61/588 61/3528 42 26 15 15 15 13 61/147 61/882 42 34 29 7 7 7 1/61, 4/61 Table 3. (continued) Table 3. Euler characteristics of the 94 orbifolds M ( µ ) and their 42 26 15 15 15 13 1/61, 4/61 cone manifold covers P ( µ ) , with ( µ i ) = ( p i /q ) . Coda: nonarithmetic μ = (3,3,7,7)/10 Fuchsian groups μ′ = (1,1,9,9)/10 ⊂ CH 1 CH 1 F Γ Γ′ ρ =1/3 B 3 5 5/2 T 0,4 ∞ ∞ 2 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend