what do we see
play

What do we see ? Kai Schweda 1/53 LHC lecture, Heidelberg, 1 Feb, - PowerPoint PPT Presentation

What do we see ? Kai Schweda 1/53 LHC lecture, Heidelberg, 1 Feb, 2010 Hadron spectra from RHIC p+p and Au+Au collisions at 200 GeV Full kinematic reconstruction of (multi-) strange hadrons in large acceptance of STAR White papers - STAR:


  1. What do we see ? Kai Schweda 1/53 LHC lecture, Heidelberg, 1 Feb, 2010

  2. Hadron spectra from RHIC p+p and Au+Au collisions at 200 GeV Full kinematic reconstruction of (multi-) strange hadrons in large acceptance of STAR White papers - STAR: Nucl. Phys. A757, p102. Kai Schweda 2/53 LHC lecture, Heidelberg, 1 Feb, 2010

  3. Outline  Introduction  Collectivity at RHIC - transverse radial flow - tranverse elliptic flow - extracting η /s  Heavy − quark dynamics  Outlook Kai Schweda 3/53 LHC lecture, Heidelberg, 1 Feb, 2010

  4. HI - Collision History  T c(ritical) : quarks and gluon ⇒ hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out  T fo : particle spectra freeze out Plot: R. Stock, arXiv:0807.1610 [nucl-ex]. Kai Schweda 4/53 LHC lecture, Heidelberg, 1 Feb, 2010

  5. Chemical Freeze-out Model Refs. J.Rafelski PLB(1991)333 Hadron resonance ideal gas P. Braun-Munzinger et al., nucl-th/0304013 Density of particle i Q i : 1 for u and d, -1 for u and d T ch : Chemical freeze-out temperature µ q : light-quark chemical potential s i : 1 for s, -1 for s µ s : strange-quark chemical potential : spin-isospin freedom g i m i : particle mass V : volume term, drops out for ratios! γ s : strangeness under-saturation factor µ B = 3 µ q µ S = µ q - µ s All resonances and unstable particles are decayed Compare particle ratios to experimental data Kai Schweda 5/53 LHC lecture, Heidelberg, 1 Feb, 2010

  6. Example At RHIC, Au+Au @ 200 GeV: T ch = 160 MeV, µ B = 20 MeV Anti-proton to proton ratio: Volume drops out Pbar/p = exp[(-20 MeV - 20 MeV)/160 MeV] = 0.77 ψ ’/J/ ψ = (m ψ ’ /m J/ ψ ) 2 * K 2 (m ψ ’ /160 MeV)/ K 2 (m J/ ψ /160 MeV) = 3% Experimentally: measure particle yields and ratio to extract T ch and µ B Kai Schweda 6/53 LHC lecture, Heidelberg, 1 Feb, 2010

  7. Hadron Yield − Ratios 1) At RHIC: T ch = 160 ± 10 MeV µ B = 25 ± 5 MeV 2) γ S = 1. ➠ The hadronic system is thermalized at RHIC. 3) Short-lived resonances show deviations. ➠ There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/0304013. Kai Schweda LHC lecture, Heidelberg, 1 Feb, 2010

  8. Chemical Freeze-Out vs Energy With increasing energy: • T ch increases and saturates at T ch = 160 MeV • Coincides with Hagedorn temperature • Coincides with early lattice results  limiting temperature for hadrons, T ch ch ≈ 160 MeV ! µ B decreases, µ B = 1MeV at LHC •  Nearly net-baryon free ! A. Andronic et al., NPA 772 (2006) 167. Kai Schweda 8/53 LHC lecture, Heidelberg, 1 Feb, 2010

  9. QCD Phase Diagram Kai Schweda 9/53 LHC lecture, Heidelberg, 1 Feb, 2010

  10. Baryon Ratios With increasing energy: • Baryon ratios approach unity At LHC, pbar / p ≈ 0.95 •  with increasing collision energy, production of matter and anti-matter gets closer Compilation: N. Xu Kai Schweda 10/53 LHC lecture, Heidelberg, 1 Feb, 2010

  11. ‘Elementary’ p+p Collisions  Low multiplicities  use canonical ensemble: Strangeness locally conserved!  particle yields are well reproduced  Strangeness not equilibrated ! ( γ s = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997). Kai Schweda 11/53 LHC lecture, Heidelberg, 1 Feb, 2010

  12. HI - Collision History  T c(ritical) : quarks and gluon ⇒ hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV  T fo : particle spectra freeze out Plot: R. Stock, arXiv:0807.1610 [nucl-ex]. Kai Schweda 12/53 LHC lecture, Heidelberg, 1 Feb, 2010

  13. Collective Flow Kai Schweda LHC lecture, Heidelberg, 1 Feb, 2010

  14. Pressure, Flow, … Pressure, Flow, … Pressure, Flow, Pressure, Flow, Thermodynamic identity � � = + d dU pdV σ – entropy p – pressure U – energy V – volume τ = k B T, thermal energy per dof In A+A collisions, interactions among constituents and density distribution lead to: pressure gradient ⇒ collective flow ⇔ number of degrees of freedom (dof) ⇔ Equation of State (EOS) ⇔ cumulative – partonic + hadronic Kai Schweda 14/53 LHC lecture, Heidelberg, 1 Feb, 2010

  15. Momentum Distributions* Momentum Distributions* Momentum Distributions* Momentum Distributions* π • Typical mass ordering in inverse slope T th =107±8 [MeV] from light π to heavier Λ ] < β t >=0.55±0.08 [c] c ) -1 π n=0.65±0.09 • Two-parameter fit describes yields of [(GeV/ K (dE/dx) χ 2 /dof=106/90 π , K, p, Λ K (kink) solid lines: fit range p T th = 90 ± 10 MeV • K (dE/dx) K (kink) dy < β t > = 0.55 ± 0.08 c • N T dp p d  Disentangle π 2 collective motion from thermal Λ Λ 2 random walk p T [GeV/ c ] *Au+Au @130 GeV, STAR Kai Schweda 15/53 LHC lecture, Heidelberg, 1 Feb, 2010

  16. (anti-)Protons From RHIC (anti-)Protons From RHIC (anti-)Protons From RHIC (anti-)Protons From RHIC Au+Au@130GeV Au+Au@130GeV Au+Au@130GeV Au+Au@130GeV More central collisions = 2 + 2 m p mass T T Centrality dependence: - spectra at low momentum de-populated, become flatter at larger momentum ➠ stronger collective flow in more central tronger collective flow in more central coll oll.! .! STAR: Phys. Rev. C70, 041901(R). Kai Schweda 16/53 LHC lecture, Heidelberg, 1 Feb, 2010

  17. Thermal Model + Radial Flow Thermal Model + Radial Flow Thermal Model + Radial Flow Thermal Model + Radial Flow Fit Fit Fit Fit Source is assumed to be: – in local thermal equilibration: T fo – boosted in transverse radial direction: ρ = f( β s ) boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48 , 2462(1993) 3 N E d � � (u µ p µ )/T fo p random 3 � d � µ � e dp � � � � � m T cosh � p T sinh � dN � R � � � � � rdrm T K 1 I 0 � � � � m T dm T � T fo � � T fo � 0 � � � r � 1 � T � = tanh � T = � S � = 0.5, 1, 2 � � � � R Kai Schweda 17/53 LHC lecture, Heidelberg, 1 Feb, 2010

  18. D-meson collective flow Large collective flow velocity ⇒ Spectrum moves to larger momentum Kai Schweda 18/53 LHC lecture, Heidelberg, 1 Feb, 2010

  19. HI - Collision History  T c(ritical) : quarks and gluon ⇒ hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV  T fo : particle spectra freeze out, T fo ≈ 100 MeV : π , K, p Plot: R. Stock, arXiv:0807.1610 [nucl-ex]. Kai Schweda 19/53 LHC lecture, Heidelberg, 1 Feb, 2010

  20. Kinetic Freeze-out at RHIC φ 1) Multi-strange hadrons φ 1) Multi-strange hadrons Ω and Ω freeze-out earlier freeze-out earlier and π , ( π than ( , K K , , p p ) ) than   Collectivity prior to Collectivity prior to hadronization hadronization 2) Sudden single freeze-out*: 2) Sudden single freeze-out*: Resonance decays lower T Resonance decays lower T fo fo π , for ( π , K K , , p p ) ) STAR Preliminary for (  Collectivity prior to Collectivity prior to  hadronization hadronization   Partonic Partonic Collectivity ? ? Collectivity STAR Data: Nucl. Phys. A757, (2005 102), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779 . Kai Schweda 20/53 LHC lecture, Heidelberg, 1 Feb, 2010

  21. Anisotropy Parameter v 2 coordinate-space-anisotropy ⇔ momentum-space-anisotropy y p y p x x � = � y 2 � x 2 � v 2 = cos2 � , � = tan � 1 ( p y ) � y 2 + x 2 � p x Initial/final conditions, EoS, degrees of freedom

  22. v 2 in the Low-p T Region P. Hu ovinen, private communications, 2004 - v 2 approx. linear in p T , mass ordering from light π to heavier Λ ➠ characteristic of hydrodynamic flow ! ➠ sensitive to equation of state Kai Schweda 22/53 LHC lecture, Heidelberg, 1 Feb, 2010

  23. Non-ideal Hydro-dynamics � s < 6/4 �  finite shear viscosity η reduces elliptic flow String theory predicts:  many caveats, e.g.: - initial eccentricity ε (Glauber, CGC, …) η /s > 1/4 π - equation of state - hadronic contribution to η /s M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663. Kai Schweda 23/53 LHC lecture, Heidelberg, 1 Feb, 2010

  24. Elliptic Flow vs Collision Energy Glauber initial conditions  Centrality dependence: - initial eccentricity ε - overlap area S  Collision energy dep.: - multiplicity density dN ch /dy  in central collisions at RHIC, hydro-limit seems reached ! NA49, Phys. Rev. C68, 034903 (2003); STAR, Phys. Rev. C66, 034904 (2002); Hydro-calcs.: P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev.C62, 054909 (2000). Kai Schweda 24/53 LHC lecture, Heidelberg, 1 Feb, 2010

  25. v 2 of φ and multi-strange Ω  Strange-quark flow - partonic collectivity at RHIC ! QM05 conference: M. Oldenburg; nucl-ex/0510026. Kai Schweda 25/53 LHC lecture, Heidelberg, 1 Feb, 2010

  26. Collectivity, Deconfinement at RHIC - v 2 , spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have: ➪ Partonic Collectivity Deconfinement ➪  Thermalization ? PHENIX: PRL 91 , 182301(03) STAR: PRL 92 , 052302(04) S. Voloshin, NPA715, 379(03) Models: Greco et al, PR C68 , 034904(03) X. Dong, et al., Phys. Lett. B597 , 328(04). …. Kai Schweda 26/53 LHC lecture, Heidelberg, 1 Feb, 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend