welcome back edge expansion conductance spectra of the
play

Welcome back. Edge Expansion/Conductance. Spectra of the graph. - PowerPoint PPT Presentation

Welcome back. Edge Expansion/Conductance. Spectra of the graph. Graph G = ( V , E ) , A : Adjacency Matrix A ij = 1 ( i , j ) E Today. Assume regular graph of degree d . M = 1 d A , normalized adjacency matrix, M real, symmetric Review:


  1. Welcome back. Edge Expansion/Conductance. Spectra of the graph. Graph G = ( V , E ) , A : Adjacency Matrix A ij = 1 ⇔ ( i , j ) ∈ E Today. Assume regular graph of degree d . M = 1 d A , normalized adjacency matrix, M real, symmetric Review: Spectral gap, Edge expansion h ( G ) , Sparsity φ ( G ) etc. Edge Expansion. orthonormal eigenvectors: v 1 ,..., v n with eigenvalues | E ( S , V − S ) | λ 1 ≥ λ 2 ≥ ... ≥ λ n h ( S ) = d min ( | S | , | V − S | ) , h ( G ) = min S ⊂ V h ( S ) Write 1 − λ 2 as a relaxation of φ ( G ) , Cheeger easy part Claim: Any two eigenvectors with different eigenvalues are Conductance (Sparsity). orthogonal. φ ( S ) = n | E ( S , V − S ) | d | S || V − S | , φ ( G ) = min S ⊂ V φ ( S ) Proof: Eigenvectors: v , v ′ with eigenvalues λ , λ ′ . v T Mv ′ = v T ( λ ′ v ′ ) = λ ′ v T v ′ Cheeger hard part: Sweeping cut Algorithm, Proof, Asymptotic Note n ≥ max ( | S | , | V |−| S | ) ≥ n / 2 tight example v T Mv ′ = λ v T v ′ = λ v T v . → h ( G ) ≤ φ ( G ) ≤ 2 h ( S ) Action of M . Spectral Gap and the connectivity of graph. Spectral Gap and Conductance. v - assigns values to vertices. We will show 1 − λ 2 as a continuous relaxation of φ ( G ) . ( Mv ) i = 1 d ∑ j ∼ i v j . Spectral gap: µ = λ 1 − λ 2 = 1 − λ 2 . Action of M : taking the average of your neighbours. n | E ( S , V − S ) | φ ( G ) = min S ∈ V | E ( S , V − S ) | (Direct) result from the action of M , | λ i | ≤ 1 ∀ i d | S || V − S | Recall: h ( G ) = min S , | S |≤| V | / 2 | S | v 1 = 1 . λ 1 = 1. 1 − λ 2 = 0 ⇔ λ 2 = 1 ⇔ G disconnected ⇔ h ( G ) = 0 � 1 if i ∈ S Let x be the characteritic vector of set S x i = Claim: For a connected graph λ 2 < 1. In general, small spectral gap 1 − λ 2 suggests ”poorly connected” 0 if i �∈ S graph Proof: Second Eigenvector: v ⊥ 1 . Max value x . | E ( S , V − S ) | = 1 A ij | x i − x j | = d Connected → path from x valued node to lower value. 2 ∑ 2 ∑ M ij ( x i − x j ) 2 Formally → ∃ e = ( i , j ) , v i = x , x j < x . i , j i , j Cheeger’s Inequality j i ( Mv ) i ≤ 1 d ( x + x ··· + v j ) < x . | S || V − S | = 1 | x i − x j | = 1 . 2 ∑ 2 ∑ ( x i − x j ) 2 . 1 − λ 2 . � Therefore λ 2 < 1. ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) x i , j i , j ≤ x 2 Claim: Connected if λ 2 < 1. n ∑ i , j M ij ( x i − x j ) 2 φ ( G ) = min x ∈{ 0 , 1 } V −{ 0 , 1 } Proof: By contradiction. Assign + 1 to vertices in one component, − δ ∑ i , j ( x i − x j ) 2 to rest. x i = ( Mx i ) = ⇒ eigenvector with λ = 1. Choose δ to make ∑ i x i = 0, i.e., x ⊥ 1 .

  2. Combining the two claims, we get x T Mx Recall Rayleigh Quotient: λ 2 = max x ∈ R V −{ 0 } , x ⊥ 1 x T x x T Mx 2 ( x T x − x T Mx ) Recall Rayleigh Quotient: λ 2 = max x ∈ R V −{ 0 } , x ⊥ 1 ∑ i , j M ij ( x i − x j ) 2 x T x 1 − λ 2 = min x ∈ R V −{ 0 } , x ⊥ 1 1 − λ 2 = min x ∈ R V −{ 0 } , x ⊥ 1 2 x T x 1 n ∑ i , j ( x i − x j ) 2 2 ( x T x − x T Mx ) Claim: 2 ( x T x − x T Mx ) = ∑ i , j M ij ( x i − x j ) 2 1 − λ 2 = min x ∈ R V −{ 0 } , x ⊥ 1 ∑ i , j M ij ( x i − x j ) 2 2 x T x = min x ∈ R V − Span { 1 } n ∑ i , j ( x i − x j ) 2 1 Proof: Claim: 2 x T x = 1 n ∑ i , j ( x i − x j ) 2 M ij ( x i − x j ) 2 = ∑ M ij ( x 2 i + x 2 ∑ j ) − 2 ∑ M ij x i x j Proof: i , j i , j i , j Recall ( x i − x j ) 2 = ∑ x 2 i + x 2 1 ∑ j − 2 x i x j j ) − 2 x T Mx = ∑ d ( x 2 i + x 2 n ∑ i , j M ij ( x i − x j ) 2 i ∑ φ ( G ) = min x ∈{ 0 , 1 } V −{ 0 , 1 } i , j i , j j ∼ i ∑ i , j ( x i − x j ) 2 x i ) 2 = 2 n ∑ i = 2 nx T x x 2 x 2 = 2 n ∑ i − 2 ( ∑ 1 = 2 ∑ j ) − 2 x T Mx d ( x 2 i + x 2 i i i We have 1 − λ 2 as a continuous relaxation of φ ( G ) , thus ( i , j ) ∈ E We used x ⊥ 1 ⇒ ∑ i x i = 0 i − 2 x T Mx = 2 x T x − 2 x T Mx x 2 = 2 ∑ 1 − λ 2 ≤ φ ( G ) ≤ 2 h ( G ) i Hooray!! We get the easy part of Cheeger 1 − λ 2 ≤ h ( G ) 2 Cheeger Hard Part. Sweeping Cut Algorithm Proof of Main Lemma � Now let’s get to the hard part of Cheeger h ( G ) ≤ 2 ( 1 − λ 2 ) . WLOG V = { 1 ,..., n } x 1 ≤ x 2 ≤ ... ≤ x n Input: G = ( V , E ) , x ∈ R V , x ⊥ 1 Idea : We have 1 − λ 2 as a continuous relaxation of φ ( G ) Want to show Sort the vertices in non-decreasing order in terms of their values in x ∑ i , j M ij ( x i − x j ) 2 Take the 2 nd eigenvector x = argmin x ∈ R V − Span { 1 } WLOG V = { 1 ,..., n } x 1 ≤ x 2 ≤ ... ≤ x n 1 √ d | E ( S , V − S ) | 1 n ∑ i , j ( x i − x j ) 2 ∃ i s.t. h ( S i ) = min ( | S | , | V − S | ) ≤ 2 δ Let S i = { 1 ,..., i } i = 1 ,..., n − 1 Consider x as an embedding of the vertices to the real line. Return S = argmin S i h ( S i ) Round x to get a x ∈ { 0 , 1 } V Probabilistic Argument: Construct a distribution D over { S 1 ,..., S n − 1 } Main Lemma: G = ( V , E ) , d -regular Rounding: Take a threshold t , such that x ∈ R V , x ⊥ 1 , δ = ∑ i , j M ij ( x i − x j ) 2 E S ∼ D [ 1 √ � d | E ( S , V − S ) | ] x i ≥ t → x i = 1 n ∑ i , j ( x i − x j ) 2 1 E S ∼ D [ min ( | S | , | V − S | )] ≤ 2 δ √ x i < t → x i = 0 If S is the ouput of the sweeping cut algorithm, then h ( S ) ≤ 2 δ √ Note: Applying the Main Lemma with the 2 nd eigenvector v 2 , we have What will be a good t ? → E S ∼ D [ 1 d | E ( S , V − S ) |− 2 δ min ( | S | , | V − S | )] ≤ 0 √ � δ = 1 − λ 2 , and h ( G ) ≤ h ( S ) ≤ 2 ( 1 − λ 2 ) . Done! We don’t know. Try all possible thresholds ( n − 1 possibilities), and 1 ∃ S d | E ( S , V − S ) |− 2 δ min ( | S | , | V − S | ) ≤ 0 hope there is a t leading to a good cut!

  3. The distribution D √ E S ∼ D [ 1 d | E ( S , V − S ) | ] √ Goal: E S ∼ D [ min ( | S | , | V − S | )] ≤ 2 δ E S ∼ D [ 1 d | E ( S , V − S ) | ] Goal: E S ∼ D [ min ( | S | , | V − S | )] ≤ 2 δ Numerator: Denominator: Let T i , j = i , j is cut by ( S , V − S ) Let T i = i is in the smaller set of S , V − S 2 ⌋ = 0, and x 2 1 + x 2 WLOG, shift and scale so that x ⌊ n n = 1 Can check � Pr [ T i , j ] = | x 2 i − x 2 x i , x j same sign: j | E S ∼ D [ T i ] = Pr [ T i ] = x 2 Take t from the range [ x 1 , x n ] with density function f ( t ) = 2 | t | . Pr [ T i , j ] = x 2 i + x 2 i x i , x j different sign: j � x n � 0 � x n 0 2 t d t = x 2 1 + x 2 Check: x 1 f ( t ) d t = x 1 − 2 t d t + n = 1 A common upper bound: E [ T i , j ] = Pr [ T i , j ] ≤ | x i − x j | ( | x i | + | x j | ) S = { i : x i ≤ t } E S ∼ D [ min ( | S | , | V − S | )] = E S ∼ D [ ∑ T i ] i Take D as the distribution over S 1 ,..., S n − 1 resulted from the above = ∑ E S ∼ D [ T i ] E S ∼ D [ 1 d | E ( S , V − S ) | ] = 1 procedure. 2 ∑ M ij E [ T i , j ] i i , j = ∑ x 2 i ≤ 1 i 2 ∑ M ij | x i − x j | ( | x i | + | x j | ) i , j Recall δ = ∑ i , j M ij ( x i − x j ) 2 n ∑ i , j ( x i − x j ) 2 , a ij = � M ij | x i − x j | , b ij = � M ij | x i | + | x j | Cauchy-Schwarz Inequality 1 √ E S ∼ D [ 1 d | E ( S , V − S ) | ] Goal: E S ∼ D [ min ( | S | , | V − S | )] ≤ 2 δ M ij ( x i − x j ) 2 = δ � a � 2 = ∑ | a · b | ≤ � a �� b � , as a · b = � a �� b � cos ( a , b ) ( x i − x j ) 2 n ∑ Numerator: Applying with a , b ∈ R n 2 with a ij = � M ij | x i − x j | , b ij = � M ij | x i | + | x j | i , j i , j E S ∼ D [ 1 d | E ( S , V − S ) | ] = ≤ 1 2 � a �� b � = δ n ∑ ( x 2 i + x 2 j ) − ∑ 2 x i x j Numerator: √ ≤ 1 i , j i , j � 2 δ ∑ � 2 δ ∑ x 2 x 2 x 2 4 ∑ = E S ∼ D [ 1 d | E ( S , V − S ) | ] = 1 i i i = δ 2 2 ∑ M ij E [ T i , j ] n ∑ ( x 2 i + x 2 j ) − 2 ( ∑ x i ) 2 i i i i , j i , j i Recall Denominator: ≤ 1 2 ∑ ≤ δ M ij | x i − x j | ( | x i | + | x j | ) j ) = 2 δ ∑ ( x 2 i + x 2 x 2 n ∑ i E S ∼ D [ min ( | S | , | V − S | )] = ∑ x 2 i , j i , j i i = 1 i 2 a · b We get � b � 2 = ∑ ≤ 1 M ij ( | x i | + | x j | ) 2 E S ∼ D [ 1 √ d | E ( S , V − S ) | ] 2 � a �� b � E S ∼ D [ min ( | S | , | V − S | )] ≤ 2 δ i , j ≤ ∑ M ij ( 2 x 2 i + 2 x 2 j ) √ i , j � Thus ∃ S i such that h ( S i ) ≤ 2 δ , which gives h ( G ) ≤ 2 ( 1 − λ ) x 2 = 4 ∑ i i

  4. Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. Cycle Sum up. x n / 2 ≈ n 4 � Tight example for hard part of Cheeger? i − n / 4 if i ≤ n / 2 ··· ··· x i = 2 = 1 − λ 2 µ 3 n / 4 − i if i > n / 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is asymptotically tight. x 1 ≈ − n x n ≈ − n 4 4 1 − λ 2 as a relaxation of φ ( G ) . Cycle on n nodes. Hit with M . Sweeping cut Algorithm  − n / 4 + 1 / 2 if i = 1 , n Probabilistic argument to show there exists a good threshold cut Edge expansion:Cut in half.   | S | = n ( Mx ) i = n / 4 − 1 if i = n / 2 Example: Cycle, Cheeger hard part is asymptotic tight . 2 , | E ( S , S ) | = 2  → h ( G ) = 4 x i otherwise n .  → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 Show eigenvalue gap µ is O ( 1 n 2 )) n 2 ) n 2 ) . µ = λ 1 − λ 2 = O ( 1 Find x ⊥ 1 with Rayleigh quotient, x T Mx n 2 ) x T x close to 1. h ( G ) = 4 � n = Θ( 2 µ ) Asymptotically tight example for upper bound for Cheeger � � h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ . Satish will be back on Tuesday.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend