wavelets on the symmetric group
play

Wavelets on the symmetric group Risi Kondor Walter Dempsey f ( - PowerPoint PPT Presentation

Wavelets on the symmetric group Risi Kondor Walter Dempsey f ( ) = f ( ) ( ) S n S 3


  1. Wavelets on the symmetric group Risi Kondor Walter Dempsey

  2. � � f ( λ ) = f ( σ ) ρ λ ( σ ) σ ∈ S n

  3. � � � � � S 3 � � ������������������������ � � � � � � � � � � � � � � � � � � � � � � � S 3 S 2 S 1 � � � � � � � � � � � � � � � � � � � � � � � � � � � S 3 , 2 = { [123] } S 3 , 1 = { [213] } S 2 , 3 = { [132] } S 2 , 1 = { [312] } S 1 , 3 = { [231] } S 1 , 2 = { [321] } S i 1 ...i k = { σ ∈ S n | σ ( n ) = i 1 , . . . , σ ( n − k +1) = i k } = µ i 1 ...i k S n − k

  4. � � � � �� � � � � � �� � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

  5. � � � � � � � � . . . ⊂ V − 1 ⊂ V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . ⊂ L 2 ( R ) MRA1. � k V k = { 0 } , MRA2. � k V k = L 2 ( R ), MRA3. for any f ∈ V k and any m ∈ Z , the function f � ( x ) = f ( x − m 2 � k ) is also in V k , MRA4. for any f ∈ V k , the function f � ( x ) = f (2 x ), is in V k +1 . � V 0 . . . . . . V − 1 V − 2 V − 3 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � W − 1 W − 2 W − 3 W − 4

  6. We say that a sequence of spaces V 0 ⊆ V 1 ⊆ . . . ⊆ V n − 1 = R S n forms a left-invariant coset based multiresolution analysis (L-CMRA) for S n if L1. for any f ∈ V k and any τ ∈ S n , we have T τ f ∈ V k , L2. if f ∈ V k , then P i 1 ...i k +1 f ∈ V k +1 , for any i 1 , . . . , i k +1 , and L3. if g ∈ V k +1 , then for any i 1 , . . . , i k +1 there is an f ∈ V k such that P i 1 ...i k +1 f = g .

  7. We say that a sequence of spaces V 0 ⊆ V 1 ⊆ . . . ⊆ V n − 1 = R S n forms a bi-invariant coset based multiresolution analysis (Bi-CMRA) for S n if Bi1. for any f ∈ V k and any τ ∈ S n , we have T τ f ∈ V k and T R τ f ∈ V k Bi2. if f ∈ V k , then P i 1 ...i k +1 f ∈ V k +1 , for any i 1 , . . . , i k +1 ; and Bi3. if g ∈ V k +1 , then for any i 1 , . . . , i k +1 there is an f ∈ V k such that P i 1 ...i k +1 f = g .

  8. Proposition 1 If { M t } t ∈ T n are the adapted left S n –modules of R S n , and V 0 = � t ∈ ν 0 M t for some ν 0 ⊆ T n , then � � ν k = ν 0 ↓ n − k ↑ n , V k = W k = M t , M t , where t ∈ ν k t ∈ ν k +1 \ ν k (1) for any k ∈ { 0 , 1 , . . . , n − 1 } . 1 3 5 6 7 t = 2 4 ∈ T 8 , 8

  9. If ν 0 = { 1 2 3 4 5 } , then � � 1 2 3 4 1 2 3 4 ↑ 5 = ν 1 = 1 2 3 4 5 , 5 1 2 3 � � 1 2 3 4 1 2 3 5 1 2 3 4 1 2 3 ↑ 5 = ν 2 = 1 2 3 4 5 , 5 4 4 5 , 5 , , 1 2 3 1 2 4 1 2 5 � � 1 2 3 4 1 2 3 5 1 2 4 5 1 2 3 1 2 4 1 2 5 4 3 3 1 2 ↑ 5 = ν 3 = 1 2 3 4 5 , 5 4 3 4 5 , 3 5 , 3 4 , 5 5 4 , , , , , , . . . � � 1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 ↑ 5 = ν 4 = 1 2 3 4 5 , 5 4 3 2 4 5 , 3 5 , 3 4 , 2 5 , 2 4 , . . . , , , , (analog of Haar wavelets)

  10. Proposition 1 Given a set of partitions ν 0 ⊆ Λ n , the corresponding Bi-CMRA comprises the spaces ν k = ν 0 ↓ n − k ↑ n . � � V k = W k = (1) where U λ , U λ , λ ∈ ν k λ ∈ ν k +1 \ ν k Moreover, any system of spaces satisfying Definition ?? is of this form for some ν 0 ⊆ Λ n . λ =

  11. If ν 0 = { (5) } = { } , then � � } ↑ 5 = ν 1 = { , � � } ↑ 5 = ν 2 = { , , , � � } ↑ 5 = ν 3 = { , , , , , � � } ↑ 5 = ν 4 = { , , , , , , .

  12. � � d λ ( t ) / ( n − k )! [ ρ λ ( t ) ( µ − 1 i 1 ...i k σ )] t � ,t σ ∈ µ i 1 ...i k S n − k ψ i 1 ...i kt,t � ( σ ) := 0 otherwise , � � d λ ( t ) / ( n − k )! [ ρ λ ( t ) ( µ − 1 i 1 ...i k σ µ j 1 ...j k )] t � ,t σ ∈ µ i 1 ...i k S n − k µ j 1 ...j k ψ i 1 ...i k j 1 ...j k ,t,t � ( σ ) := 0 otherwise ,

  13. 1: function FastLCWT( f, ν , ( i 1 . . . i k )) { 2: if k = n � 1 then return ( Scaling ν ( v ( f ))) 3: 4: end if 5: v � 0 6: for each i k +1 �� { i 1 . . . i k } do if P i 1 ...i k +1 f � = 0 then 7: v � v + Φ i k (FastLCWT( f � i 1 ...i k +1 , ν � n − k − 1 , ( i 1 . . . i k +1 ))) 8: end if 9: 10: end for 11: output Wavelet ν ↓ n − k − 1 ↑ n − k \ ν ( v ) 12: return Scaling ν ( v ) } Complexity: O ( n 2 q � t ∈ ν 1 d λ ( t ) )

  14. to do: • properly implement in SnOB2 • try sparse estimation in wavelet space on data • algorithms for manipulating distributions while maintaining sparsity • think about what projective MRA means on other groups

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend