volatility and skewness indices using state preference
play

Volatility and Skewness Indices Using State-Preference Pricing - PowerPoint PPT Presentation

Volatility and Skewness Indices Using State-Preference Pricing Zhangxin Frank Liu Finance Theory Module 2 March 16 th , 2013 1 / 71 Outline FIX the VIX 1 BEX and BUX 2 SIX is SICK 3 Future Research 4 2 / 71 Motivation I WHY CARE


  1. Volatility and Skewness Indices Using State-Preference Pricing Zhangxin Frank Liu Finance Theory Module 2 March 16 th , 2013 1 / 71

  2. Outline FIX the VIX 1 BEX and BUX 2 SIX is SICK 3 Future Research 4 2 / 71

  3. Motivation I • WHY CARE ABOUT VOLATILITY AT ALL? “. . . what distinguishes financial economics is the central role that uncertainty plays in both financial theory and its empirical implementation. The start- ing point for every financial model is the uncer- tainty facing investors, . . . Indeed, in the absence of uncertainty, the problems of financial economics reduce to exercises in basic microeconomics.” Campbell, Lo and MacKinlay (1997) 3 / 71

  4. Volatility Forecasting • Volatility forecasting has been discussed in following con- texts (Poon and Granger, 2003; Andersen et al. (2005)): • Historical volatility • Quick and easy but how far back should one refer to? • ARCH/GARCH volatility • ARCH (Engle, 1982): time-varying function of current observables. • GARCH (Bollerslev, 1986; Taylor, 1986): f ( ω 1 ¯ V , ω 2 ˆ V t − 1 , ω 3 ǫ ; t ) 4 / 71

  5. Volatility Forecasting • . . . • Implied volatility • Implied from option prices • Invert the analytical pricing formula from some option pricing models (if exist); or follow some model-free approaches (Du- mas, Fleming and Whaley (1998)). 5 / 71

  6. VIX History • A brief history of VIX (Carr and Wu, 2006) • Old VIX (VXO) • First introduced by Whaley (1993) • Based on OEX options (American style) • An average of the Black-Scholes implied volatilities on eight near-the-money options at the two nearest maturities • Artificially induced upward bias from the CBOE trading day conversion √ NC TV ( t , T ) = ATMV ( t , T ) √ NT √ NC ≡ ATMV ( t , T ) � NC − 2 × int ( NC / 7 ) 6 / 71

  7. VIX History • . . . • New VIX: • CBOE revised methodology in 2003. • Based on SPX options (European style) • Model-free approach in Demeterfi, Derman, Kamal and Zou (DDKZ, 1999) • Correct artificial upward bias from the previous trading day conversion • Trading of VIX futures contracts from May 2004; VIX options from February 2006 7 / 71

  8. VIX 101 • VIX formula: � F � 2 j = 2 ∆ K i e rT Q ( K i ) − 1 � σ 2 − 1 ∀ j = 1 , 2 K 2 T j T j K 0 i i � � � 365 N T 2 − N 30 N 30 − N T 1 T 1 σ 2 + T 2 σ 2 VIX = 100 1 2 30 N T 2 − N T 1 N T 2 − N T 1 • Principal of DDKZ (1999): realized volatility can be captured by the dynamic hedging of a log contract. 8 / 71

  9. VIX 101 Derivation: Theoretical definition of realized variance for a given price history is � T V = 1 σ 2 ( t , . . . ) dt T 0 Think about pricing a variance swap: F = E ( e − rT ( V − K )) For a zero initial value, �� T � K var = E ( V ) = 1 σ 2 ( t , . . . ) dt T E 0 9 / 71

  10. VIX 101 DDKZ (1999) only assumes that future underlyer evolution is diffusive (i.e. no jumps allowed): dS t = µ ( t , . . . ) dt + σ ( t , . . . ) dZ t S t � � µ − 1 Itô’s lemma 2 σ 2 d ( ln S t ) = ⇒ dt + σ dZ t ⇒ dS t − d ( ln S t ) = 1 2 σ 2 dt S t � dS t � σ 2 dt = 2 or − d ( ln S t ) S t 10 / 71

  11. VIX 101 Now we have  = 1 �� T � 0 σ 2 ( t , . . . ) dt K var T E  � � σ 2 dt dS t = 2 S t − d ( ln S t )  �� T � � T ∴ E ( V ) = K var = 2 dS t T E d ( ln S t ) − S t 0 0 �� T � � � = 2 − 2 dS t ln S T T E T E S t S 0 0 � �� � � �� � B A 11 / 71

  12. VIX 101 �� T � A = E ( r dt + σ ( t , . . . ) dZ t ) Z t ∼ N ( 0 , t ) 0 = rT � � ln S T B = E S 0 � � ln S T + ln S ∗ = E S ∗ S 0 � �� � Log contract where S ∗ is some arbitrary number to define the boundary of OTM calls and puts. 12 / 71

  13. VIX 101 How to value E ( ln ( S T / S ∗ )) ? Suppose we buy a portfolio of op- tions, Π , spanning all strikes K ∈ ( 0 , ∞ ) with expiration T and weighted inversely proportional to K 2 , we have OTM puts OTM calls � �� � � �� � � S ∗ � ∞ 1 1 Π = K 2 max ( K − S T , 0 ) dK + K 2 max ( S T − K , 0 ) dK 0 S ∗ � � S ∗ 1 K 2 ( K − S T ) dK , if S T < S ∗ S T = � S T 1 K 2 ( S T − K ) dK , if S T ≥ S ∗ S ∗ = − 1 − ln S T + S T + ln S ∗ S ∗ = S T − S ∗ − ln S T S ∗ S ∗ � � � S T − S ∗ � ln S T ∴ E = E − Π S ∗ S ∗ 13 / 71

  14. VIX 101 � � S T − S ∗ � � K var = 2 T ( rT ) − 2 + ln S ∗ E − Π T S ∗ S 0 � �� S ∗ � S T � = 2 1 − 1 K 2 max ( K − S T , 0 ) dK + rT − E + E T S ∗ 0 � ∞ � � 1 − ln S ∗ K 2 max ( S T − K , 0 ) dK S 0 S ∗  a � �� � � S 0 e rT � = 2  − ln S ∗  rT − − 1 +  T S ∗ S 0   b � �� � � S ∗ � ∞ P ( K ) C ( K )  e rT dK + e rT  dK  K 2 K 2 0 S ∗  14 / 71

  15. VIX 101 � � S 0 e rT � � a = 2 � e rT � ln − 1 − ln ( S ∗ ) + ln ( S 0 ) − T S ∗ � � S 0 e rT � � S 0 e rT �� = 2 ln − 1 − T S ∗ S ∗ � F � F � � �� = 2 where F = S 0 e rT ln − 1 − T S ∗ S ∗   � F � F � F � � 2 � ≈ 2  − 1    − 1 − 1 − − 1   T S ∗ 2 S ∗ S ∗   � �� � Taylor expansion of ln ( F / S ∗ ) � F � 2 = − 1 − 1 where S ∗ ≡ K 0 T S ∗ 15 / 71

  16. VIX 101 �� S ∗ � � ∞ b = 2 e rT P ( K ) C ( K ) dK + dK K 2 K 2 T 0 S ∗   � S ∗ � K H ≈ 2 e rT  P ( K ) C ( K )    dK + dK   K 2 K 2 T  K L S ∗  � �� � � �� � truncation error ∞→ K H truncation error 0 → K L ≈ 2 ∆ K i � e rT Q ( K i ) K 2 T i i � �� � discretization error Hence we obtain the VIX formula � F �� � � 2 K var = E ( V ) ≈ 2 − 1 ∆ K i e rT Q ( K i ) = σ 2 − 1 VIX K 2 T T S ∗ i i 16 / 71

  17. Why the switch? • SPX options are more popular • “Model-free approach” • One can replicate the payoff of VIX futures and options • VIX futures and options can be traded for volatility hedging purposes 17 / 71

  18. Any Drawbacks? • Truncation and Discretization errors (Jiang and Tian, 2007) • Linear interpolation may induce an error, if model-free im- plied variance does not follow a linear function of maturity. • Mechanically higher weights are allocated to OTM puts i.e. VIX may be manipulable by trading relatively cheaper Deep- OTM put options. • Why not consider trade volume? 18 / 71

  19. FIX the VIX Let’s FIX the VIX. 19 / 71

  20. FIX the VIX • A forward-looking volatility index (FIX) as a proxy for market realized volatility over the next 30 days. • State-Preference Pricing Approach • Arrow (1964) and Debreu (1959) S � P t = (Φ s , t + 1 d s , t + 1 ) s = 1 • View FIX 2 as a financial asset pays you this dollar amount: � � S T + 0 . 05 �� 2 ln S 0 • How to define state prices? 20 / 71

  21. FIX the VIX • State prices (Breeden and Litzenberger, 1978): Φ( T , . . . ) = ∂ 2 C ( K , T ) = ∂ 2 P ( K , T ) ∂ K 2 ∂ K 2 • To see this, construct a butterfly spread to long one call with strike M − ∆ M , long one call with strike M + ∆ M and short two calls with strike M (Barraclough, 2008). S T < M − ∆ M M − ∆ M < S T < M M < S T < M + ∆ M M + ∆ M < S T Long 1 call with M − ∆ M 0 S T − ( M − ∆ M ) S T − ( M − ∆ M ) S T − ( M − ∆ M ) Short 2 calls with M 0 0 − 2 ( S T − M ) − 2 ( S T − M ) Long 1 call with M + ∆ M 0 0 0 S T − ( M + ∆ M ) Total at t = T 0 ∆ M + ( S T − M ) ∆ M − ( S T − M ) 0 • Payoff is $∆ M if S T = M at maturity. 21 / 71

  22. FIX the VIX • Thus the cost of butterfly spread that produces a payment of $1 if the future state is S T = M is: P ( M ; ∆ M ) = C ( M − ∆ M , T ) − 2 C ( M , T ) + C ( M + ∆ M , T ) ∆ M • Divide the above by the step size ∆ M and in the limit as ∆ M → 0 yields: C ( M − ∆ M , T ) − 2 C ( M , T ) + C ( M + ∆ M , T ) P ( M ; ∆ M ) lim = lim ∆ M 2 ∆ M ∆ M → 0 ∆ M → 0 � = ∂ 2 C ( K , T ) � � ∂ K 2 � K = M 22 / 71

  23. FIX the VIX • Thus the price of a security f with payoff d f M at some future state M is � ∂ 2 C ( K , T ) � � � � P f = � d f d f P ( M ; dM ) = dM � M M ∂ K 2 � ���� � �� � ���� M M K = M � �� � payoff state price payoff state price • As an example, let’s have a look at pricing a European put option. We know the price of the put option can be found as: � ∞ P = E ( e − rT ( K − S T ) + ) = ( K − S T ) + e − rT f ( S T ) dS T � �� � � �� � 0 payoff state price � K ( K − S T ) e − rT f ( S T ) dS T = 0 23 / 71

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend