variational estimates for martingale transforms
play

Variational estimates for martingale transforms Pavel Zorin-Kranich - PowerPoint PPT Presentation

Variational estimates for martingale transforms Pavel Zorin-Kranich University of Bonn 2020-06-04 Joint work with P. Friz. https://www.math.uni-bonn.de/~pzorin/slides/2020-06-04-var-mart-transforms.pdf Pavel Zorin-Kranich (U Bonn)


  1. Variational estimates for martingale transforms Pavel Zorin-Kranich University of Bonn 2020-06-04 Joint work with P. Friz. https://www.math.uni-bonn.de/~pzorin/slides/2020-06-04-var-mart-transforms.pdf Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms 1/ 12

  2. Rough paths Defjnition Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms . 1 / p |𝕐 u l βˆ’ 1 , u l | p ) l = 1 βˆ‘ l max ( l max , u 0 <β‹―< u lmax sup V p 𝕐 = , 1 / p l = 1 βˆ‘ l max A p -rough path, 2 < p < 3, is a pair X ∢ [ 0 , ∞) β†’ H , 𝕐 ∢ Ξ” = {( s , t ) | 0 ≀ s < t < ∞} β†’ H βŠ— H such that X ∈ V p loc , 𝕐 ∈ V p / 2 2/ 12 (Chen’s relation) p-variation: V p X = sup l max , u 0 <β‹―< u lmax ( loc , and for s < t < u 𝕐 s , u = 𝕐 s , t + 𝕐 t , u + ( X u βˆ’ X t ) βŠ— ( X t βˆ’ X s ). | X u l βˆ’ X u l βˆ’ 1 | p ) How to check the conditions X ∈ V p and 𝕐 ∈ V p / 2 ?

  3. Rough path lifts of martingales Let M = ( M t ) be a (Hilbert space valued) cΓ dlΓ g martingale. Let Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms How to incorporate e.g. fractional Brownian motion? Q: what is the appropriate generality for these lifting results? There exist rough path lifts of over processes, e.g. LΓ©vy processes. 3/ 12 ( s , t ] Then, a.s., the pair ( M , 𝕅) is a p -rough path for any p > 2. 𝕅 s , t ∢= ∫ ( M u βˆ’ βˆ’ M s ) βŠ— dM u . β–Ά Chen’s relation – from ItΓ΄ integration β–Ά Bound for V p M : LΓ©pingle 1976. β–Ά Bounds for V p / 2 𝕅 : β–Ά M Brownian motion: Lyons 1998 β–Ά M has continuous paths: Friz+Victoir 2006 β–Ά M dyadic: Do+Muscalu+Thiele 2010, β–Ά M has cΓ dlΓ g paths: Chevyrev+Friz 2017, Kovač+ZK 2018.

  4. Joint rough path lifts All martingales and processes are adapted, cΓ dlΓ g, Hilbert space valued. Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms The proof also recovers existence of ItΓ΄ integrals and estimates for New in this result: is a p-rough path. ) 4/ 12 𝕐 ( X p-rough path ( 2 < p < 3 ). Then, a.s., the pair of processes Let M = ( M t ) be a cΓ dlΓ g martingale and ( X , 𝕐) a deterministic cΓ dlΓ g Theorem (Friz+ZK 2020+) ∫ X u βˆ’ βŠ— dM u M ) , ( ∫ M u βˆ’ βŠ— dX u ∫ M u βˆ’ βŠ— dM u β–Ά Variational estimates for ItΓ΄ integrals ∫ X dM , β–Ά existence of and estimates for integrals ∫ M dX . 𝕅 = ∫ M dM from previous slide.

  5. Martingale transforms 𝜐 Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms RHS is ≲ β€– Sf β€– L q 0 β€– Sg β€– L q 0 . In this case, any r > 1 works. The supremum is taken over increasing sequences of stopping times 𝜐 = (𝜐 k ) . β€– L q 1 β€– Sg β€– L q 0 . 1 / p β€– 𝜐 k βˆ’ 1 < j β‰€πœ k sup ( k β€–(βˆ‘ β€– 5/ 12 β€– Theorem (Main estimate) Martingale in t variable, discrete version of area integral. β€– V r Ξ ( f , g )β€– s < j ≀ t Let ( f n ) n βˆˆβ„• be a discrete time adapted process and ( g n ) n βˆˆβ„• a discrete time martingale. Defjne paraproduct Ξ  s , t ( f , g ) ∢= βˆ‘ ( f j βˆ’ 1 βˆ’ f s ) dg j , dg j = g j βˆ’ g j βˆ’ 1 . Let 1 ≀ p ≀ ∞ , 0 < q 1 ≀ ∞ , 1 ≀ q 0 < ∞ . Defjne q by 1 / q = 1 / q 0 + 1 / q 1 and suppose 1 / r < 1 / 2 + 1 / p. Then, with β€– g β€– L q = (𝔽| g | q ) 1 / q , Sg = [ g ] 1 / 2 , β€– L q ≲ sup | f j βˆ’ 1 βˆ’ f 𝜐 k βˆ’ 1 |) p ) β–Ά If f is a martingale, p = 2, 1 ≀ q 1 < ∞ , then by BDG inequality the β–Ά For general f , RHS is ≀ β€– V p f β€– L q 0 β€– Sg β€– L q 0 and r = p / 2 works.

  6. Discrete approximation of adapted processes lim Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms Given πœ— > 0, consider the adapted partition Proof. p ∈ ( p , ∞) βˆͺ {∞} . for any Μƒ p ) in Defjnition 6/ 12 If f ∈ L q ( V p ) for some q > 0 and p > 1 , then Lemma ∢= f ⌊ t ,πœŒβŒ‹ . t f (𝜌) ⌊ t , πœŒβŒ‹ ∢= max { s ∈ 𝜌 | s ≀ t }, For an adapted partition 𝜌 , let An adapted partition 𝜌 = (𝜌 j ) j is an increasing sequence of stopping times. Adapted partitions are ordered by a.s. inclusion of the sets {𝜌 j | j ∈ β„•} . The set of adapted partitions is directed, so lim 𝜌 makes sense. 𝜌 f (𝜌) = f L q ( V Μƒ 𝜌 j + 1 (πœ•) ∢= inf { t > 𝜌 j (πœ•) | 𝜌 0 ∢= 0 , | | f t βˆ’ f 𝜌 j (πœ•) |(πœ•) > πœ—}.

  7. Discrete approximation of ItΓ΄ integrals T ∈ 𝜌. Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms integral. Cauchy net in the space L q ( V r ) , so we also reprove the existence of the ItΓ΄ In fact, the discrete estimate gives more: the discrete approximations are a ( s , t ] where 1 / r > 1 / 2 + 1 / p and Since it converges to the ItΓ΄ integral, we get the same estimate for it: The RHS is a martingale transform, to which our main estimate applies. j ∢𝜌 j ≀ T βˆ‘ f (𝜌) 0 T ∫ 7/ 12 The ItΓ΄ integral of the discretized process f (𝜌) is given by u βˆ’ dM u = f 𝜌 j βˆ’ 1 ( M 𝜌 j βˆ’ M 𝜌 j βˆ’ 1 ), β€– V r Ξ ( f , g )β€– L q ≲ β€– V p f β€– L q 1 β€– Sg β€– L q 0 , Ξ ( f , g ) s , t = ∫ ( f u βˆ’ βˆ’ f s ) dg u .

  8. Stopping time reduction ∞ Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms where the supremum is taken over all adapted partitions 𝜐 . (1) β€– L q , 1 /𝜍 β€– 𝜍 ) |Ξ  t , t β€² |) 𝜐 j βˆ’ 1 ≀ t < t β€² β‰€πœ j sup ( j = 1 βˆ‘ β€–( f adapted process, g martingale β€– 𝜐 Then, for every 0 < 𝜍 < r < ∞ and q ∈ ( 0 , ∞] , we have Lemma Suppose 1 / r < 1 / p + 1 / 2 . Then Theorem (Main estimate) Square function: Sg = [ g ] 1 / 2 , 8/ 12 Martingale transform: Ξ  s , t ( f , g ) = βˆ‘ s < j ≀ t ( f j βˆ’ 1 βˆ’ f s ) dg j HΓΆlder exponents: 1 / q = 1 / q 0 + 1 / q 1 . β€– V r Ξ β€– L q (Ω) ≲ β€– V p f β€– L q 1 (Ω) β€– Sg β€– L q 0 (Ω) . The V r norm is estimated as follows. Let (Ξ  s , t ) s ≀ t be a cΓ dlΓ g adapted sequence with Ξ  t , t = 0 for all t. β€– V r Ξ β€– L q ≲ sup

  9. Stopping time construction ( V r X ) βˆ‘ m = 0 ( 2 βˆ’ m V ∞ ∞ ) r βˆ’πœ ∞ βˆ‘ j = 1 | X 𝜐 ( m ) j βˆ’ X 𝜐 ( m ) ∞ βˆ’ X 𝜐 ( m ) βˆ‘ m = 0 ( 2 βˆ’ m ) r βˆ’πœ ∞ βˆ‘ j = 1 | X 𝜐 ( m ) j βˆ’ X 𝜐 ( m ) Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms ∞ ≀ C j | > 2 βˆ’ m V ∞ Let V ∞ Construct stopping times with m ∈ β„• : 𝜐 ( m ) 0 ∢= 0 , 𝜐 ( m ) j | j | X 𝜐 ( m ) 9/ 12 βˆ‘ ( V r X ) j = 1 ∞ βˆ‘ Then m = 0 ∞ For simplicity, we consider processes Ξ  s , t = X t βˆ’ X s . n ∢= sup n β€³ ≀ n β€² ≀ n | X n β€³ βˆ’ X n β€² | . j + 1 ∢= inf { t > 𝜐 ( m ) | | X t βˆ’ X 𝜐 ( m ) t / 10 }. r ≀ C j βˆ’ 1 | r j βˆ’ 1 | 𝜍 Since V ∞ ≀ V r , and assuming V r < ∞ , this implies 𝜍 ≀ C j βˆ’ 1 | 𝜍 .

  10. LΓ©pingle’s inequality Above stopping time argument fjrst used in the following result. Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms inequalities that follow from weighted inequalities by OsΘ©kowski. For dealing with martingale transforms, we use vector-valued BDG Weighted inequalities imply vector-valued inequalities. Classical LΓ©pingle’s inequality is the case w ≑ 1, A p ( w ) = 1. p βˆ’ 1 β€– L ∞ ( w ) 𝜐 ) ‖𝔽( w | β„± 𝜐 stopping time sup A p ( w ) ∢= For 1 < p < ∞ and 2 < r, we have Let M be a martingale and w a positive random variable. Theorem (ZK 2019) 10/ 12 β€– V r M β€– L p ( w ) ≀ C p , r A p ( w ) max ( 1 , 1 /( p βˆ’ 1 )) β€– M β€– L p ( w ) , where the A p charactersitic is given by 𝜐 )𝔽( w βˆ’ 1 /( p βˆ’ 1 ) | β„±

  11. Sketch of proof of the main estimate k j = 1 f adapted process, g martingale k | f ( j ) k βˆ’ 1 | 2 | g ( j ) k βˆ’ 1 | 2 ) 1 / 2 ( here f ( j ) t ≀ 𝔽 ∞ βˆ‘ j = 1 ( f ( j ) | g ( j ) ∞ j = 1 Pavel Zorin-Kranich (U Bonn) – Variational estimates for martingale transforms 1 / 2 k βˆ’ 1 | 2 ) | g ( j ) k βˆ‘ βˆ‘ k βˆ’ 1 | 2 ) ∞ 1 / 2 (𝔽 ( f ( j ) j = 1 βˆ‘ ∞ βˆ‘ (βˆ‘ = 𝔽 sup Square function: Sg = [ g ] 1 / 2 , For an adapted partition 𝜐 , want to show β€– β€–(βˆ‘ l sup 𝜐 l βˆ’ 1 ≀ t ≀ t β€² β‰€πœ l |Ξ  t , t β€² | 𝜍 ) 1 /𝜍 β€– β€– ∞ β€– S Ξ  𝜐 j βˆ’ 1 ,𝜐 j β€– 1 βˆ‘ j = 1 11/ 12 [𝜐 j βˆ’ 1 ,𝜐 j ] β€– sup j = 1 βˆ‘ ∞ ≲ BDG |Ξ |β€– 1 [𝜐 j βˆ’ 1 ,𝜐 j ] βˆ‘ j = 1 ∞ Martingale transform: Ξ  s , t ( f , g ) = βˆ‘ s < j ≀ t ( f j βˆ’ 1 βˆ’ f s ) dg j exponents: 1 / q = 1 / q 0 + 1 / q 1 , 1 /𝜍 = 1 / p + 1 / 2. β€– L q (Ω) ≲ β€– V p f β€– L q 1 (Ω) β€– Sg β€– L q 0 (Ω) . Simple case: q 1 = q 0 = p = 2, q = 𝜍 = 1. |Ξ |β€– 1 = k βˆ’ g ( j ) = f t ∧𝜐 j βˆ’ f t ∧𝜐 j βˆ’ 1 ) 1 / 2 ≀ (𝔽 βˆ— )(βˆ‘ k βˆ’ g ( j ) βˆ— ) 2 ) k βˆ’ g ( j ) If one of the conditions q 1 = p , q = 𝜍 , q 0 = 2 fails, things get more tricky.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend