vanishing signatures a complete dichotomy rises from the
play

Vanishing Signatures A Complete Dichotomy Rises from the Capture of - PowerPoint PPT Presentation

. .. .. . . .. . . . . . .. . . .. . . .. .. (joint work with Jin-Yi Cai and Tyson Williams) STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) June 3rd 2013 Palo Alto University of Wisconsia-Madison Heng Guo . Vanishing


  1. . .. .. . . .. . . . . . .. . . .. . . .. .. (joint work with Jin-Yi Cai and Tyson Williams) STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) June 3rd 2013 Palo Alto University of Wisconsia-Madison Heng Guo . Vanishing Signatures A Complete Dichotomy Rises from the Capture of . . . .. . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . . .. . .. . . .. . . 1 / 29

  2. . .. .. . . .. . . . . . .. . . .. . . .. .. . STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) . . . . . . Contents Counting Problems . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. 2 / 29 . . .. . . .. . . 1 Counting Problems 2 Dichotomy 3 Vanishing Signatures

  3. . . . .. . . .. . .. .. . . .. . . .. . . . Approximate an integral by a weighted sum; STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Ising model, Potts model, Hard-core gas model, … Partition functions. Classical simulation of quantum circuits; e expectation of any random variable; . be computed is usually expressed as a sum of products. learning, quantum computation, information theory, and so on. e quantity to Computational Counting problems appear often in statistical physics, machine Counting problems Counting Problems . .. . .. .. .. .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . .. . . . .. . . .. . 3 / 29

  4. . . . .. . . .. . .. .. . . .. . . .. . . . Approximate an integral by a weighted sum; STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Ising model, Potts model, Hard-core gas model, … Partition functions. Classical simulation of quantum circuits; e expectation of any random variable; . be computed is usually expressed as a sum of products. learning, quantum computation, information theory, and so on. e quantity to Computational Counting problems appear often in statistical physics, machine Counting problems Counting Problems . .. . .. .. .. .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . .. . . . .. . . .. . 3 / 29

  5. . . . .. . . .. . .. .. . . .. . . .. . . . Approximate an integral by a weighted sum; STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Ising model, Potts model, Hard-core gas model, … Partition functions. Classical simulation of quantum circuits; e expectation of any random variable; . be computed is usually expressed as a sum of products. learning, quantum computation, information theory, and so on. e quantity to Computational Counting problems appear often in statistical physics, machine Counting problems Counting Problems . .. . .. .. .. .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . .. . . . .. . . .. . 3 / 29

  6. where f I 0 0 f I 1 1 f I 0 1 f I 1 0 . . . .. . . .. . . .. . . . .. . . .. Let us take a closer look at the partition functions. Counting Problems i STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) 1 . , j f I Partition functions E i j 0 1 V We can rewrite it in the following form: Ising model (without an external �eld): . .. .. . . . . .. . . .. . .. . . . .. . . .. . . .. .. . . . . .. . . .. . . .. . .. .. . . .. . . 4 / 29 ∑ β n ( σ ) , σ : V �→{ + , −} where n ( σ ) is the number of (+ , +) and ( − , − ) neighbours in the graph given σ .

  7. . . .. . . .. . . .. . . .. . . .. . .. . Partition functions STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) We can rewrite it in the following form: Ising model (without an external �eld): Let us take a closer look at the partition functions. Counting Problems . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . . .. 4 / 29 . .. . .. . . .. . ∑ β n ( σ ) , σ : V �→{ + , −} where n ( σ ) is the number of (+ , +) and ( − , − ) neighbours in the graph given σ . ∑ ∏ f I ( σ ( i ) , σ ( j )) , σ : V �→{ 0 , 1 } ( i , j ) ∈ E where f I ( 0 , 0 ) = f I ( 1 , 1 ) = β , f I ( 0 , 1 ) = f I ( 1 , 0 ) = 1 .

  8. where f  0 0 f  1 0 f  0 1 f  1 1 g  0 1 and g  1 . Counting Problems . .. . . .. . . .. Hard-core gas model: . . .. . . .. Partition functions i j We can rewrite it in the following form: i STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) . 0 , 1 , g  V i V j i f  E . 0 1 .. . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . . . . . .. . . .. . . .. . .. . . . .. . . .. 5 / 29 ∑ λ | V ′ | 1 { V ′ is an independent set } V ′ ⊆ V

  9. . . .. . . .. .. . .. . . .. . . .. . .. . . . .. . . .. . Counting Problems Partition functions Hard-core gas model: We can rewrite it in the following form: Heng Guo (CS, UW-Madison) Complex Holant STOC 2013 . . .. .. . . .. . . .. . . . . . .. . . .. . . . .. . . .. . . .. . .. . . 5 / 29 . .. ∑ λ | V ′ | 1 { V ′ is an independent set } V ′ ⊆ V ∑ ∏ ∏ f  ( σ ( i ) , σ ( j )) g  ( σ ( i )) , i ∈ V σ : V �→{ 0 , 1 } ( i , j ) ∈ E where f  ( 0 , 0 ) = f  ( 1 , 0 ) = f  ( 0 , 1 ) = 1 , f  ( 1 , 1 ) = 0 , g  ( 0 ) = 1 and g  ( 1 ) = λ .

  10. E v is the assignment and f  is the E-O function. . . . . .. . . .. .. . . . . .. . . .. .. . f  STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) restricted to the set E v of incident edges of v , where E v v V . 0 1 E We can rewrite it in the following form: #Perfect-Matching: Perfect matchings Counting Problems . .. .. . .. .. . . .. . . . .. . .. . . .. . . . . .. .. . . .. . . .. . . . . . .. . . .. . 6 / 29 ∑ 1 { E ′ is a perfect matching } E ′ ⊆ E

  11. . . .. . .. .. . . .. . . .. . . .. . .. . . . .. . . .. . Counting Problems Perfect matchings #Perfect-Matching: We can rewrite it in the following form: Heng Guo (CS, UW-Madison) Complex Holant STOC 2013 . . .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . . .. 6 / 29 . . . . .. .. . .. ∑ 1 { E ′ is a perfect matching } E ′ ⊆ E ∑ ∏ f  ( σ | E ( v ) ) , v ∈ V σ : E �→{ 0 , 1 } where σ | E ( v ) is the assignment σ restricted to the set E ( v ) of incident edges of v , and f  is the E-O function.

  12. . .. . . .. . . .. . . .. . . .. . . . . Instance is a graph. STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Quantity to compute is an exponential sum over all possible assignments. Functions take assignments on adjacent edges/vertices as inputs. Vertices and edges are associated with some functions. Common features . Counting Problems . .. . . .. .. . .. . . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. .. . . .. . . 7 / 29

  13. . .. . . .. . . .. . . .. . . .. . . . . Instance is a graph. STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Quantity to compute is an exponential sum over all possible assignments. Functions take assignments on adjacent edges/vertices as inputs. Vertices and edges are associated with some functions. Common features . Counting Problems . .. . . .. .. . .. . . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. .. . . .. . . 7 / 29

  14. . .. . . .. . . .. . . .. . . .. . . . . Instance is a graph. STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Quantity to compute is an exponential sum over all possible assignments. Functions take assignments on adjacent edges/vertices as inputs. Vertices and edges are associated with some functions. Common features . Counting Problems . .. . . .. .. . .. . . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. .. . . .. . . 7 / 29

  15. . . . . .. . . .. . . .. . . .. . . .. .. . . . STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) e expressive power is increasing in order. . . . .. . . specify where to put the functions and to sum over what assignments. Counting problems are often parameterized by constraint functions. Frameworks Frameworks Counting Problems . .. . .. .. .. . . .. . . . . . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. . 8 / 29 1 Graph Homomorphisms 2 Constraint Satisfaction Problems (#CSP) 3 Holant Problems

  16. . . Counting Problems . .. . . .. . .. . . . .. . . .. . . Instance - signature grid . .. . STOC 2013 Complex Holant Heng Guo (CS, UW-Madison) Figure: A signature grid f 2 . f 4 f 3 f 1 . . f 1 . f 3 . f 1 . f 2 .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . 9 / 29 .. .. . . .. . . .. . . . . .. . . .. . . .. A signature grid Ω = ( G , F , π ) consists of a graph G = ( V , E ) , where each vertex is labeled by a function f v ∈ F , and π : V → F is the labelling.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend