v
play

v F c v F c 2 1 4 3 4 v < 3 v < 2 v < 1 v v F c - PowerPoint PPT Presentation

v F c v F c 2 1 4 3 4 v < 3 v < 2 v < 1 v v F c ( ) v 0 F c v F c v F c r v r > 0 v F c = prox C ( r v ) r v r > 0 My Favorite


  1. v F c

  2. v F c λ 2 λ 1 λ 4 λ 3 λ 4 v < λ 3 v < λ 2 v < λ 1 v

  3. v F c λ ( γ − λ ) v ≥ 0 ∀ γ ∈ F c

  4. v F c λ

  5. v F c λ λ − r v ∀ r > 0

  6. v F c λ λ = prox C ( λ − r v ) λ − r v ∀ r > 0

  7. My Favorite Benefits • Local non-linear friction models used directly without any λ = prox C ( λ − r v ) discretization • Fixed point problem gives us Gauss-Seidel and Jacobi = prox C ( λ − r v ) λ schemes almost for free see |{z} paper for details | {z } x F ( x ) • Any solution for any r>0 value will be an “exact” solution! • Supports stabilization, x k +1 = F ( x k ) simultaneous impacts, various time-stepping methods and more see paper for details

  8. The Drawbacks λ = prox C ( λ − r v ) • Not obvious what r-value to use = prox C ( λ − r v ) λ • Some r-values cause |{z} | {z } divergence, others can x F ( x ) accelerate convergence • Our solution is to use adaptive x k +1 = F ( x k ) r-values

  9. Adaptive r-Factor Scheme while not converged λ k +1 = prox C ( λ k − Rv ) r k +1 = | λ k +1 − λ k | ∞ if r k +1 > r k R ← ν R else λ k ← λ k +1

  10. Initial r-Factor values • Global strategy r = 5 1 r i = • Local strategy A ii  1 � 0 A ii R k = A − 1 • Blocked strategy 0 s : r,s : r

  11. Insight on Global Strategy We have the iterative scheme λ k +1 = prox C λ k − R ( A λ k + b ) � � If R = A − 1 Then λ k +1 = prox C ( − Rb ) Just one iteration

  12. Insight on Global Strategy We have the iterative scheme λ k +1 = prox C λ k − R ( A λ k + b ) � � If R = A − 1 t n a w e t o s n r e o v d n Then i e s w t i t i r : o e m t a e A m l b e λ k +1 = prox C ( − Rb ) i o t x u r o P p r p m p o a c e o w t o s Just one iteration

  13. Insight on Local Strategy Let us choose r i = γ 1 γ ∈ [0 , 2] A = L + D + U A ii Then P j<i U ij λ j + P j>i L ij λ j + D ii λ i − b i ✓ ◆ λ i = prox C λ i − γ D ii b i − P j<i U ij λ j + P j>i L ij λ j ✓ ◆ λ i = prox C (1 − γ ) λ i + γ D ii This is exactly the usual LCP-PSOR variant

  14. Little Matlab Example

  15. Adaptive r-Factor PSOR (1.4)

  16. Test Scenes

  17. Gauss-Seidel or Jacobi Variant?

  18. Convergence rate behaviors of 424 runs of Jacks (Jacobi) 10 6 Max 3rd Quartile 10 4 Median 1st Quartile Merit function 10 2 Min 10 0 10 -2 10 -4 0 20 40 60 80 100 120 140 160 180 200 Solver iteration

  19. Convergence rate behaviors of 424 runs of Jacks (Gauss Seidel) 10 6 Max 3rd Quartile 10 4 Median 1st Quartile Merit function 10 2 Min 10 0 10 -2 10 -4 0 20 40 60 80 100 120 140 160 180 200 Solver iteration

  20. Divergence Count Comparison 140 Jacks (Jacobi) Spheres (Jacobi) Tower (Jacobi) 120 Wall (Jacobi) Jacks (Gauss Seidel) 100 Spheres (Gauss Seidel) Count (#) Tower (Gauss Seidel) 80 Wall (Gauss Seidel) 60 40 20 50 100 150 200 250 300 350 400 Solver run(#)

  21. Exit Status

  22. Blocked r-Factor 1400 Absolute Convergence 1200 Relative Convergence Observations (#) Non Convergence 1000 Divergence 800 600 400 200 0 Glasses Jacks Spheres Tower Wall Test Scenes

  23. Global r-Factor 1400 Absolute Convergence 1200 Relative Convergence Observations (#) Non Convergence 1000 Divergence 800 600 400 200 0 Glasses Jacks Spheres Tower Wall Test Scenes

  24. Local r-Factor 1400 Absolute Convergence 1200 Relative Convergence Observations (#) Non Convergence 1000 Divergence 800 600 400 200 0 Glasses Jacks Spheres Tower Wall Test Scenes

  25. Iterations

  26. Convergence rate behaviors of 424 runs of Jacks (Blocked) 10 6 Max 3rd Quartile 10 4 Median Merit function 1st Quartile 10 2 Min 10 0 10 -2 10 -4 0 50 100 150 200 250 300 350 400 450 Solver iteration

  27. Convergence rate behaviors of 424 runs of Jacks (Global) 10 6 Max 3rd Quartile 10 4 Median Merit function 1st Quartile 10 2 Min 10 0 10 -2 10 -4 0 50 100 150 200 250 Solver iteration

  28. Convergence rate behaviors of 424 runs of Jacks (Local) 10 6 Max 3rd Quartile 10 4 Median Merit function 1st Quartile 10 2 Min 10 0 10 -2 10 -4 0 20 40 60 80 100 120 140 160 180 200 Solver iteration

  29. Overall Performance

  30. Timing details of Spheres (Blocked) test scene 10 7 Solver 10 6 Collision Detection Narrow Phase 10 5 Preprocessing Time (ms) 10 4 Contact Reduction Broad Phase 10 3 10 2 10 1 10 0 0 50 100 150 200 250 300 350 400 450 Simulaiton Step (#)

  31. Timing details of Spheres (Global) test scene 10 7 Solver 10 6 Collision Detection Narrow Phase 10 5 Preprocessing Time (ms) 10 4 Contact Reduction Broad Phase 10 3 10 2 10 1 10 0 0 50 100 150 200 250 300 350 400 450 Simulaiton Step (#)

  32. Timing details of Spheres (Local) test scene 10 7 Collision Detection 10 6 Narrow Phase Solver 10 5 Preprocessing Time (ms) 10 4 Contact Reduction Broad Phase 10 3 10 2 10 1 10 0 0 50 100 150 200 250 300 350 400 450 Simulaiton Step (#)

  33. Summary of Findings • Proximal operators are a flexible modeling tool for contact dynamics • Gauss-Seidel or Jacobi? • Gauss-Seidel variant is more predictable than Jacobi variant • Jacobi variant causes divergence more often than Gauss-Seidel variant • The r-Factor strategies • They only change the numerics not the model • Adaptive r-values improves convergence over constant r-values • Blocked is hopeless for our test cases • Global has advantages for structured stacks, local is slightly faster but not much

  34. Thanks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend