usp matrix model revisited
play

USp Matrix Model Revisited 080304@KEK originally with A. Tokura - PowerPoint PPT Presentation

USp Matrix Model Revisited 080304@KEK originally with A. Tokura (97) later with A. Tsuchiya, T. Matsuo, B. Chen, H. Kihara (Osaka U.) in recent years with H. Kihara (KIAS), R. Yoshioka (OCU) I). Introduction ten years of developments in


  1. USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with A. Tsuchiya, T. Matsuo, B. Chen, H. Kihara (Osaka U.) in recent years with H. Kihara (KIAS), R. Yoshioka (OCU) I). Introduction • ten years of developments in reduced matrix models • review not as a reflection but as an opportunity for a better perspective

  2. Contents I). Introduction II). Criteria and construction [I-Tok] III). Semi-uniqueness and loop variables [I-Tok, I-Tsuch] IV). S-D equation [I-Tsuch] V). Spacetime fluctuations represented by nonabelian Berry phase [I-Mats, CIK] VI). Attempts in recent years [IY, IKY]

  3. II). Criteria and construction M BFSS by ’84 − → type I ← → hetero SO (32) IIA IIB � W Ω projection ← → S 9 open added T 9 hetero E 8 × E 8 16 + 16 supercharges 8 + 8 supercharges closed + open, nonorientable closed, orientable large k ⇓ ⇓ reduced model IIB matrix model USp matrix model IKKT IT

  4. Action of IIB matrix model and USp matrix model Let me tell you the definitions of the models first. S IIB ( v M , Ψ) = 1 � 1 4[ v M , v N ][ v M , v N ] − 1 � ¯ ΨΓ M [ v M , Ψ] g 2 tr 2 Ψ : Maj-Weyl , 0 ≤ M, N ≤ 9 objects with : U(2k) matrices m = 0 , · · · , 3 . We also write as v m , 1 Φ I = 2 ( v 3+ I + iv 6+ I ) , I = 1 , 2 , 3 √ Ψ = ( λ, 0 , ψ 1 , 0 , ψ 2 , 0 , ψ 3 , 0 , 0 , ¯ λ, 0 , ¯ ψ 1 , 0 , ¯ ψ 2 , 0 , ¯ ψ 3 ) t using 4d superfield �� � �� � 1 � + 1 I e 2 V Φ I d 2 θd 2 ¯ θ Φ † d 2 θW α W α + h.c. + 4 d 2 θW 0 + h.c. ∴ S IIB = 4 g 2 tr g 2 √ W 0 = 2tr(Φ 1 [Φ 2 , Φ 3 ]]) Requirements for the model descending from perturbative type I superstrings i) closed (projected) ii) nonorientable iii) 8 + 8 susy

  5. • To find the matrix counterpart of the Ω projection, recall for both USp and SO. � 0 � I ր USp adj (= sym) F = U (2 k ) adj − I 0 ց USp asym � 0 � ր I SO adj (= asym) F = analog of Ω U (2 k ) adj 0 I ց SO sym 2 ( • ∓ F − 1 • t F ) ρ ∓ • = 1 The projector ˆ In fact � M � N X t F + FX = 0 for X ∈ usp (2 k ) Lie alg. ∴ X = N ∗ − M ∗ � A � B , B t = − B, C t = − C ∴ Y ≡ ( TF ) j Y t F − FY = 0 for Y ∈ antisym i = A t C ∗ We found out planar diagram analysis ⇒ Chan-Paton factor of open loop all lead to usp consistency with wv field theory • Need to add open string degrees of freedom, ( Q • , ˜ Q • , ψ Q • , ψ • keeping 8 + 8 susy ⇒ fundamental rep. Q ) , #( fund ) = n f ˜

  6. Definition of the model V = ˆ Φ 1 = ˆ ρ − Φ 1 , Φ I = ˆ ρ + Φ I , I = 2 , 3 ρ − V , adj adj asym �� � S USp = 1 � I e 2 V Φ I e − 2 V d 2 θd 2 ¯ θ Φ † d 2 θW α W α + 4 4 g 2 tr n f �� � �� � + 1 + 1 ( f ) e 2 V Q ( f ) + ˜ Q ( f ) e − 2 V ˜ � d 2 θd 2 ¯ θQ ∗ Q ∗ d 2 θW ( θ ) + h.c. ( f ) g 2 g 2 f =1 √ √ 2tr(Φ 1 [Φ 2 , Φ 3 ]) + � n f f =1 ( m ( f ) ˜ 2 ˜ W ( θ ) = Q ( f ) Q ( f ) + Q ( f ) Φ 1 Q ( f ) ) ↑ again using 4d superfield notation also can write S 0 : with Q ( f ) , ˜ S USp = S 0 + ∆ S Q ( f ) set to zero S 0 = S IIB (ˆ ρ b ± v m , ˆ ρ f ± Ψ A ) specific projection g 2 , Parameters (2 k ) , n ( f ) = 16 (by 6d gauge anomaly cancel.) m ( f ) , scaling : g 2 (2 k ) # = const. k → ∞ , # is difficult to determine.

  7. Why transparency • Why matrices are strings • Why F ∼ Ω • USp not SO • Why fundamentals needed • n f =? • m ( f ) =?

  8. • III). Semi-uniqueness and loop variables • [susy, projector] = 0 in the USp case • S IIB ; possesses 16 + 16 susy ∃ 8 + 8 susy • S USp ; need to check ; Is ρ b ∓ and ρ f ∓ unique?

  9. Projector and susy how to have both consistently: • susy transf.  δ (1) v M = i ¯ ǫ Γ M Ψ     δ (1) Ψ = i 2 [ v M , v N ]Γ MN ǫ   16 + 16 IIB case δ (2) v M = 0     δ (2) Ψ = ξ   • We have examined the conditions: � ρ b ∓ , δ (1)(2) ] v M = 0 [ˆ ( ∗ ) ρ b ∓ , δ (1)(2) ] v M = 0 [ˆ To be more explicit, let ρ ( M ) b ∓ = Θ( M ∈ M − )ˆ ρ − + Θ( M ∈ M + )ˆ ˆ ρ + ρ ( A ) f ∓ = Θ( A ∈ A − )ˆ ρ − + Θ( A ∈ A + )ˆ ˆ ρ + M − ∪ M + = {{ 0 , 1 , 2 , · · · , 9 }} , M − ∩ M + = ∅ , etc ( ∗ ) yield eqs. w.r.t. ǫ, ξ, M − , M + , A − , A + demand 8 + 8 susy

  10. • Solutions: our cases 6 adj + 4asym  ρ b ∓ = diag ( − , − , − , − , − , + , + , − , + , +) ˆ          I (2) 0         0 I (2)     ρ f ∓ = ˆ ˆ ρ − I (4) ⊗ + ˆ ρ + I (4) ⊗           0 I (2)              0 I (2)   M, hetero  ρ b ∓ = diag (+ , + , + , + , − , + , + , − , + , +) ˆ          0 I (2)         0 I (2)     ρ − I (4) ⊗ ρ + I (4) ⊗ ρ f ∓ = ˆ ˆ + ˆ           0 I (2)              0 I (2)   S. Rey, D. Lowe, ...

  11. Gauge anomalies cancellation still somewhat mysterious • take matrix T dual ala W. Taylor albeit being against our spirit ⇒ (zero volume limit) of 6-d. wv. gauge theory • chirality Γ 6 = Γ 0 Γ 1 Γ 2 Γ 3 Γ 4 Γ 7     λ ψ 2 0 0      , − 1 , fund , − 1  , +1 ,      ψ 1   ψ 3    0 0 ∝ tr adj F 4 − tr asym F 4 − n f tr F 4 = (16 − n f )tr F 4 nonabelian anomaly ∴ n f = 16 • should be interpreted as a force balance. The cases n f � = 16 and IIB would imply an existence of residual interactions ⇒ gauge sym. breaking ??

  12. Closed and open loops • Recall we have added the open string deg. of freedom, ⇒ fundamental rep. ( Q, ˜ Q ) , #( fund ) = n f Q, ψ Q , ψ ˜ • To make flavor symmetry ( ≈ gauge sym. of strings) manifest,  � ψ Q ( f ) Q ( f )  Q ( f ) = , ψ Q ( f ) = F − 1 ˜ F − 1 ψ ˜ Q ( f − n f ) Q ( f − nf )  tr e lM • basic operators (observables): cf. one-matrix model ≡ tr ← − Π n 1 n = n 0 exp( − ip M Φ [ p M • , η ; n 1 , n 2 ] n v M − i ¯ η n Ψ) = = Φ [ ∓ p M • , η ; n 0 , n 1 ] i.e. nonorientable ( f ) ) + ( θψ Q ( f ) + F − 1 ¯ · Λ · Π ( f ) ≡ ( ξ Q ( f ) + F − 1 ξ ∗ Q ∗ θψ ∗ Q ( f ) ) f ’ f ≡ Λ ′ · Π ( f ′ ) FU [ · · · ]Λ · Π ( f ) = - Ψ f ′ f [ p M • , η • ; n 0 , n 1 ; Λ ′ , Λ] f f ’ • , ∓ η • ; n 0 , n 1 ; Λ ′ , Λ] = ∓ Ψ ff ′ [ ∓ p M

  13. original(worldsheet) C-P factor Lie algebra − : ⇔ ⇐ our choice so (2 n f ) usp (2 k ) + : usp (2 n f ) ⇔ so (2 k )

  14. IV). S-D equation Schwinger-Dyson eq. as before f ’ Φ [( i )] ; i-th closed loop f Ψ f ′ f [( i )] ; i-th open loop Consider � dµ ∂ ∂X r tr( U ([1]) T r U [(1)]) Φ [(2)] · · · Φ [( N )] Ψ [(1)] · · · Φ [( L )] e − S 0 = � dµ ∂ ∂X r Λ (1) ′ · Π f (1) ′ FU [(1)] T r U [(1)]Λ (1) · Π f (1) Φ [(1)] · · · Φ [( N )] Ψ [(2)] · · · Φ [( L )] e − S 0 = X r = v r M or Ψ r � ∂ U [(1)]Λ (1) · Π f (1) Φ [(1)] · · · Φ [( N )] Ψ [(2)] · · · Φ [( L )] e − S 0 = dµ ∂ Z ( f ) i Z ( f ) i = Q ( f ) i or ψ Q ( f ) i

  15. • We have shown that eqs. are closed w.r.t. the loops eq. of motion acting on the loop → deformation of the loop complete set of nonorientable interactions among loops consistent with two kinds of elementary local moves. � dµ ∂ • ; n (1) 2 , n (1) • ; n (1) 1 , n (1) ∂X r { tr( U [ p (1) • , η (1) + 1] T r U [ p (1) • , η (1) 0 = 0 ]) 1 Φ [(2)] · · · Φ [( N )] Ψ [(1)] · · · Φ [( L )] e − S } T r : generator of usp(2k), X r : A r M or Ψ r α 0 = + � � 1 + + 2 1 � � + + 2 1 � � + + 2

  16. � 2 k 2 ± k ( T r ) j i δ j k ∓ F − 1 k = 1 i ( T r ) l 2 ( δ l ik F lj ) r =1 � 2 k 2 ± k ( T r ) j k • = 1 2 ( • ∓ F − 1 • t F ) = ˆ i ( T r ) l ρ ∓ r =1 I) ⇒ 1 g 2 � δ X Φ [(1) : X r ] Φ [(2)] · · · Φ [( N )] Ψ [(1)] · · · � 0 = (1) kinetic term +(2) splitting and twisting term #( loops ) increases by 1 +(3) joining with a closed string #( loops ) decreases by 1 +(4) joining with an open string #( loops ) decreases by 1

  17. V). Spacetime fluctuations represented by nonabelian Berry phase • variables  x (1)  M ...     x ( k )   v M = u ( M ) u ( M ) − 1   M   ∓ x (1)   ↑ M   ...     ∓ x ( k ) M ≡ u ( M ) X M u ( M ) − 1 ↑ spacetime pts. → Ψ integrate → s to give → ψ f dynamics to the spacetime pts. → Q f For simplicity, set u ( M ) = 1 , Q f = 0 note: spacetime pts are dynamical variables

  18. t x quantum mechanics parameter d.v. QFT parameter parameter reduced matrix model d.v. d.v. • Rather than ln Z eff [ x ( i ) M ] , we measure for a given path Γ in x ( k ) Σ �� one-particle projector �� Γ M • �� 1P-projector �� = nonabelian Berry phase S fermion = S MM + S gf + S Yukawa

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend