using sat solvers
play

Using SAT Solvers in Combinatorics and Geometry Manfred Scheucher - PowerPoint PPT Presentation

Using SAT Solvers in Combinatorics and Geometry Manfred Scheucher 1 Boolean satisfiability problem Given Boolean formula, is there an assignment such that the formula is true? 2 Boolean satisfiability problem Given Boolean formula, is


  1. Using SAT Solvers in Combinatorics and Geometry Manfred Scheucher 1

  2. Boolean satisfiability problem • Given Boolean formula, is there an assignment such that the formula is true? 2

  3. Boolean satisfiability problem • Given Boolean formula, is there an assignment such that the formula is true? • NP-complete, but quite good heuristics 2

  4. Why to use SAT Solvers? • Prove/disprove existence of structure usually faster 3

  5. Why to use SAT Solvers? • Prove/disprove existence of structure • Find (counter)examples • Counting occurences • Induction base • Induction step 3

  6. Today’s Topics • L-shaped Point Set Embeddings of Trees (with Torsten M¨ utze) • Orthogonal Symmetric Chain Decompositions (with Karl D¨ aubel, Sven J¨ ager, and Torsten M¨ utze) • (Disjoint) Holes in Point Sets • Universal Point Sets for Planar Graphs (with Hendrik Schrezenmaier and Raphael Steiner) 4

  7. L-Shaped Point Set Embeddings joint work with Torsten M¨ utze arXiv:1807.11043 5

  8. L-Shaped Point Set Embeddings T . . . tree on n vertices P . . . set of m points • vertices of T drawn as points of P • edges drawn as unions of two axis parallel line segments 6

  9. L-Shaped Point Set Embeddings f ( T ) . . . minimum number m s.t. tree T admits a planar L -shaped embedding in any set of m points f d ( n ) := max f ( T ) T : tree on n vertices max. deg. ∆( T ) ≤ d 7

  10. L-Shaped Point Set Embeddings f ( T ) . . . minimum number m s.t. tree T admits a planar L -shaped embedding in any set of m points f d ( n ) := max f ( T ) T : tree on n vertices max. deg. ∆( T ) ≤ d • f 4 ( n ) ≤ n 2 [Di Giacomo, Frati, Fulek, Grilli, Krug ’13] • f 4 ( n ) ≤ O ( n 1 . 58 ) [S.’15, Aichholzer-Hackl-S.’16] • f 3 ( n ) ≤ O ( n 1 . 22 ) , f 4 ( n ) ≤ O ( n 1 . 55 ) [Biedl et al.’17] • no non-trivial lower bound ( ≥ n is trivial) 7

  11. SAT Model • T . . . tree on vertices { v 1 , . . . , v n } • P . . . point set { P 1 , . . . , P n } • formulate Boolean satisfiability instance: ∃ solution iff. T admits an L-shaped embedding in P 8

  12. SAT Model: Variables • M i,j . . . vertex v i is mapped to point P j • H a,b . . . edge ab is connected horizontally to a 9

  13. SAT Model: Clauses • Injective mapping V to P every vertex v i has to be mapped: � M i,j j no two vertices v i 1 , v i 2 are mapped to the same point: ¬ M i 1 ,j ∨ ¬ M i 2 ,j 10

  14. SAT Model: Clauses • Injective mapping V to P • L-shaped edges: ab connects either vertically or horizontally to a (and b ) H a,b ∨ H b,a , ¬ H a,b ∨ ¬ H b,a a b 10

  15. SAT Model: Clauses • Injective mapping V to P • L-shaped edges: ab connects either vertically or horizontally to a (and b ) • No overlapping edges 10

  16. SAT Model: Clauses • Injective mapping V to P • L-shaped edges: ab connects either vertically or horizontally to a (and b ) • No overlapping edges order of points is important p r q 10

  17. SAT Model: Clauses • Injective mapping V to P • L-shaped edges: ab connects either vertically or horizontally to a (and b ) • No overlapping edges only depends on point set If p left of q and r , only depends on variables and v a → p , v b → q , v c → r , then not both edges ab and ac horizonally connected p r q 10

  18. SAT Model: Clauses • Injective mapping V to P • L-shaped edges: ab connects either vertically or horizontally to a (and b ) • No overlapping edges only depends on point set If p left of q and r , only depends on variables and v a → p , v b → q , v c → r , then not both edges ab and ac horizonally connected For each three points p, q, r with p left of q and r : ¬ M a,p ∨ ¬ M b,q ∨ ¬ M c,r ∨ ¬ H a,b ∨ ¬ H a,c 10

  19. SAT Model: Clauses • Injective mapping V to P • L-shaped edges: ab connects either vertically or horizontally to a (and b ) • No overlapping edges • No crossing edges 10

  20. Results Theorem: Every tree on n ≤ 12 vertices admits an L-shaped embedding in every set of n points. Theorem: T 13 has no L-shaped embedding in P 13 . T 13 P 13 11

  21. Results Theorem: Every tree on n ≤ 12 vertices admits an L-shaped embedding in every set of n points. Theorem: T 13 has no L-shaped embedding in P 13 . • Further examples for n ∈ { 13 , 14 , 16 , 17 , 18 , 19 , 20 } • If cyclic order fixed, infinite family . . . 11

  22. And now for something completely different 12

  23. Orthogonal Chain Decompositions joint work with Karl D¨ aubel, Sven J¨ ager, and Torsten M¨ utze arXiv:1810.09847 13

  24. Orthogonal Chain Decompositions • Boolean lattice Q n n � � can be partitioned into chains [Dilworth ’50] ⌊ n/ 2 ⌋ 14

  25. Orthogonal Chain Decompositions { 1 , 2 , 3 , 4 } { 1 , 2 , 3 } { 1 , 2 , 4 } { 1 , 3 , 4 } { 2 , 3 , 4 } { 1 , 2 } { 1 , 3 } { 1 , 4 } { 2 , 3 } { 2 , 4 } { 3 , 4 } { 1 } { 2 } { 3 } { 4 } ∅ 14

  26. Orthogonal Chain Decompositions • Boolean lattice Q n n � � can be partitioned into chains [Dilworth ’50] ⌊ n/ 2 ⌋ • orthogonal chain-decompositions: any two chains from two decompositions have at most one element in common 14

  27. Orthogonal Chain Decompositions • ∃ two orthogonal CDs in Q n ≥ 2 [Shearer-Kleitman ’79] • moreover, they conjectured ⌊ n/ 2 ⌋ + 1 15

  28. Orthogonal Chain Decompositions • ∃ two orthogonal CDs in Q n ≥ 2 [Shearer-Kleitman ’79] • moreover, they conjectured ⌊ n/ 2 ⌋ + 1 • ∃ three orthogonal CDs in Q n ≥ 24 [Spink ’17] 15

  29. Orthogonal Chain Decompositions • ∃ two orthogonal CDs in Q n ≥ 2 [Shearer-Kleitman ’79] • moreover, they conjectured ⌊ n/ 2 ⌋ + 1 • ∃ three orthogonal CDs in Q n ≥ 24 [Spink ’17] Proof Idea: 1. (specific) orthogonal CDs for Q 5 and Q 7 2. Lemma ” Q a , Q b ⇒ Q a + b ” 15

  30. Orthogonal Chain Decompositions • ∃ two orthogonal CDs in Q n ≥ 2 [Shearer-Kleitman ’79] • moreover, they conjectured ⌊ n/ 2 ⌋ + 1 • ∃ three orthogonal CDs in Q n ≥ 24 [Spink ’17] n 1 2 3 4 5 6 7 8 9 10 11 almost-orth. 1 2 2 2 3 3* 4* 3* 3* 3 4* ⌊ n/ 2 ⌋ + 1 1 2 2 3 3 4 4 5 5 6 6 found via SAT solvers! 15

  31. Orthogonal Chain Decompositions • ∃ two orthogonal CDs in Q n ≥ 2 [Shearer-Kleitman ’79] • moreover, they conjectured ⌊ n/ 2 ⌋ + 1 • ∃ three orthogonal CDs in Q n ≥ 24 [Spink ’17] n 1 2 3 4 5 6 7 8 9 10 11 almost-orth. 1 2 2 2 3 3* 4* 3* 3* 3 4* ⌊ n/ 2 ⌋ + 1 1 2 2 3 3 4 4 5 5 6 6 Theorem: ∃ four orthogonal CDs in Q n ≥ 60 . [D¨ aubel-J¨ ager-M¨ utze-S. ’18] 15

  32. SAT Instance • Problem: naive CNF formulation much too big 16

  33. SAT Instance • Problem: naive CNF formulation much too big • use symmetries 16

  34. SAT Instance { } 1 , 2 , 3 , 4 , 5 { } { } { } { } { } 1 , 2 , 3 , 4 1 , 2 , 3 , 5 1 , 2 , 4 , 5 1 , 3 , 4 , 5 2 , 3 , 4 , 5 { } { } { } { } { } { } { } { } { } { } 1 , 2 , 3 1 , 2 , 4 1 , 2 , 5 1 , 3 , 4 1 , 3 , 5 1 , 4 , 5 2 , 3 , 4 2 , 3 , 5 2 , 4 , 5 3 , 4 , 5 { } { } { } { } { } { } { } { } { } { } 1 , 2 1 , 3 1 , 4 1 , 5 2 , 3 2 , 4 2 , 5 3 , 4 3 , 5 4 , 5 { } { } { } { } { } 1 2 3 4 5 ∅ 16

  35. SAT Instance �{ 1 , 2 , 3 , 4 , 5 }� { 1 , 2 , 3 , 4 , 5 } { 1 , 2 , 3 , 4 { 1 , 2 , 3 , 5 } { 1 , 2 , 4 , 5 } { 1 , 3 , 4 , 5 } { 2 , 3 , 4 , 5 } } �{ 1 , 2 , 3 , 4 }� �{ 1 , 3 , 4 }� { 1 , 2 , 3 { 1 , 2 , 4 } { 1 , 2 , 5 } { 1 , 3 , 4 } { 1 , 3 , 5 } { 1 , 4 , 5 } { 2 , 3 , 4 } { 2 , 3 , 5 } { 2 , 4 , 5 } { 3 , 4 , 5 } } �{ 1 , 2 , 3 }� �{ 1 , 2 }� �{ 1 , 3 }� { } { } { } { } { } { } { } { } { } { } 1 , 2 1 , 3 1 , 4 1 , 5 2 , 3 2 , 4 2 , 5 3 , 4 3 , 5 4 , 5 �{ 1 }� { } { } { } { } { } 1 2 3 4 5 �∅� ∅ 16

  36. SAT Instance • Problem: naive CNF formulation much too big • use symmetries • iteratively add clauses to “correct errors” (incremental solving supported by minisat/glucose) 16

  37. And now for something more completely different 17

  38. Classical Erd˝ os–Szekeres • Given n points in the plane in general position, is there subset size k in convex position (” k -gon”)? 18

  39. Classical Erd˝ os–Szekeres • Given n points in the plane in general position, is there subset size k in convex position (” k -gon”)? 7-gon 18

  40. Classical Erd˝ os–Szekeres • Given n points in the plane in general position, is there subset size k in convex position (” k -gon”)? Theorem. 2 k − 2 + 1 ≤ g ( k ) ≤ � 2 k − 4 � . [Erd˝ os–Szekeres ’35] k − 2 equality conjectured by Szekeres, Erd˝ os offered 500$ for a proof 18

  41. Classical Erd˝ os–Szekeres • Given n points in the plane in general position, is there subset size k in convex position (” k -gon”)? Theorem. 2 k − 2 + 1 ≤ g ( k ) ≤ � 2 k − 4 � . [Erd˝ os–Szekeres ’35] k − 2 . . . Theorem. g ( k ) ≤ 2 k + o ( k ) . [Suk ’17] 18

  42. Classical Erd˝ os–Szekeres • Given n points in the plane in general position, is there subset size k in convex position (” k -gon”)? Theorem. 2 k − 2 + 1 ≤ g ( k ) ≤ � 2 k − 4 � . [Erd˝ os–Szekeres ’35] k − 2 . . . Theorem. g ( k ) ≤ 2 k + o ( k ) . [Suk ’17] Known: g (4) = 5 , g (5) = 9 , g (6) = 17 computer assisted proof, 1500 CPU hours [Szekeres–Peters ’06] 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend