using grassmann calculus in combinatorics lindstr om
play

Using Grassmann calculus in combinatorics: Lindstr - PowerPoint PPT Presentation

Grassmann variables calculus Lindstr om-Gessel-Viennot Lemma with cycles A one parameter extension of Schurs functions Using Grassmann calculus in combinatorics: Lindstr om-Gessel-Viennot lemma and Schur functions Thomas Krajewski


  1. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Using Grassmann calculus in combinatorics: Lindstr¨ om-Gessel-Viennot lemma and Schur functions Thomas Krajewski Centre de Physique Th´ eorique, Marseille krajew@cpt.univ-mrs.fr in collaboration with S. Carrozza and A. Tanasa (LABRI, Bordeaux) GASCOM 2016 Furiani, June 2-4, 2016

  2. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Algebra of Grassmann variables Definition of a Grassmann algebra Algebra of Grassmann Λ m variables generated by m anticommuting variables χ 1 , ..., χ m χ i χ j = − χ j χ i , ∀ i , j = 1 , . . . , m . Λ m algebra of dimension 2 m whose elements are interpreted as functions (power series) m 1 � � f ( χ ) = a i 1 ... i n χ i 1 . . . χ i n , m ! n =0 1 ≤ i 1 ,... i n ≤ n with antisymmetric coefficients a i σ (1) ,..., i σ ( n ) = ǫ ( σ ) a i 1 ,..., i n . Multiplication law � 0 if { i 1 , . . . , i n } ∩ { j 1 , . . . , j p } � = ∅ ( χ i 1 . . . χ i n )( χ j 1 . . . χ j p ) = sgn ( k ) χ k 1 . . . χ k n + p otherwise with k = ( k 1 , . . . , k n + p ) the permutation of ( i 1 , . . . , i n , j 1 , . . . , j p ) such that k 1 < . . . < k n + p .

  3. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Integration in a Grassmann algebra Definition of Grassman integral � � Unique linear form d χ = d χ m . . . d χ 1 on Λ m such that � � 0 if n < m d χ χ i 1 . . . χ i n = sgn ( σ ) if n = m and i k = σ ( k ) m 1 � � Integral of f ( χ ) = a i 1 ... i n χ i 1 . . . χ i n ∈ Λ m m ! n =0 1 ≤ i 1 ,... i n ≤ n � d χ f ( χ ) = a 12 ... n Motivated by translational invariance � � d χ f ( χ ) = d ψ g ( ψ ) with g ( ψ ) = f ( χ ) and ψ = χ + η . Rules of calculus apply with modifications � � (instead of a − 1 ) d χ f ( a χ ) = a d χ f ( χ )

  4. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Gaussian integral over Grassmann variables Expression of a determinant as a Grassmann integral � � � � det M = d ¯ χ N d χ N . . . d ¯ χ 1 d χ 1 exp − χ i M ij χ j ¯ 1 ≤ i , j ≤ N d ¯ χ d χ := d ¯ χ N d χ N . . . d ¯ χ 1 d χ 1 integration over 2 N Grassmann variables. Expand the exponential and perform the integration � � � � � � � � � − exp χ i M ij χ j ¯ = exp χ i M ij χ j ¯ = 1+¯ χ i M ij χ j 1 ≤ i , j ≤ N 1 ≤ i , j ≤ N 1 ≤ i , j ≤ N Grassmann version of Gaussian integral � � � = (2 π ) N � d ¯ X N dX N . . . d ¯ ¯ − X 1 dX 1 exp X i M ij X j det M 1 ≤ i , j ≤ N Extension to minors with lines I = { i 1 < · · · < i p } and columns J = { j 1 < · · · < j p } removed � � � � � 1 ≤ k ≤ p i k + j k det( M I c J c ) = ( − 1) d ¯ χ d χ χ j 1 ¯ χ i 1 . . . χ j p ¯ χ i p exp − χ i M ij χ j ¯ 1 ≤ i , j ≤ N

  5. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Adjacency and path matrices G directed graph with N vertices denoted V 1 , . . . , V n with weights w e for edges e from V i to V j . � Weighted adjacency matrix A ij = w e edges e i → j � � � � � (1 − A ) − 1 � Weighted path matrix M ij = ij = w e e ∈P paths P i → j   0 w 12 w 13 0 V 3 V 4 0 0 0 w 24   Example: A =   0 0 0 w 34   0 0 w 23 0 V 1 V 2   1 ( w 13 + w 12 w 24 w 43 ) C ( w 34 w 43 ) ( w 13 w 34 + w 12 w 24 ) C ( w 34 w 43 ) w 12 0 1 w 24 w 43 C ( w 34 w 43 ) w 24 C ( w 34 w 43 )   M =   0 0 C ( w 34 w 43 ) w 34 C ( w 34 w 43 )   0 0 w 43 C ( w 34 w 43 ) C ( w 34 w 43 ) ∞ 1 � ( w 34 w 43 ) k = with C ( w 34 w 43 ) = the contribution of 1 − w 34 w 43 k =0 the cycles 3 → 4 → 3 → . . . (formal power series)

  6. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions The Lindstr¨ om-Gessel-Viennot Lemma G directed acyclic graph with weighted path matrix M . Lindstr¨ om-Gessel-Viennot Lemma Expression of minors of path matrix as sum over non intersecting paths � � � det M i 1 < ··· < i k | j 1 < ··· < j k = ǫ ( σ ) w e � �� � σ ∈ S k 1 ≤ l ≤ k e ∈P k minor non intersecting paths P l : V il → V i σ ( l ) Example:   0 w 12 w 13 + w 12 w 23 + w 14 w 43 + w 12 w 24 w 43 w 14 + w 12 w 24 V 3 V 4 0 0 w 23 + w 24 w 43 w 24   M =   0 0 0 0   0 0 w 43 0 V 1 V 2 det M 1 , 2 | 3 , 4 = w 13 + w 12 w 23 + w 14 w 43 + w 12 w 24 w 43 w 14 + w 12 w 24 w 23 + w 24 w 43 w 24 = w 13 w 24 + w 14 w 43 w 24 + w 12 ( w 24 ) 2 w 43 + w 12 w 23 w 24 − w 14 w 23 − w 12 w 24 w 23 − w 14 w 24 w 43 − w 12 ( w 24 ) 2 w 43 = w 13 w 24 − w 23 w 14

  7. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions An extension to graph with cycles G directed graph with weighted path matrix M (see also K. Talaska http://arxiv.org/abs/1202.3128 for a combinatorial proof). Lindstr¨ om-Gessel-Viennot Lemma for graph with cycles Expression of minors of path matrix as sum over non intersecting paths and cycles � W ( P ) W ( C ) non intersecting paths P l : V il → V i σ ( l ) and cycles C s det M i 1 < ··· < i k | j 1 < ··· < j k = � W ( C ) � �� � non intersecting cycles C s minor � � � � with W ( P ) = ( − 1) σ w e and W ( C ) = ( − 1) r w e . 1 ≤ l ≤ k e ∈P l 1 ≤ s ≤ r e ∈C s Sketch of the proof: � � � χ (1 − M ) − 1 χ Write the minor as d ¯ χ d χ χ j 1 ¯ χ i 1 . . . χ j p ¯ χ i p exp − ¯ � � � d ¯ η d η exp − ¯ η (1 − M ) η + ¯ ηχ + ¯ χη � � χ (1 − M ) − 1 χ exp − ¯ = det(1 − M ) Expand the exponential and perform the integrations ⇒ vertex disjoint degree 1 or 2 subgraphs

  8. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions An example for a graph with cycles   0 w 12 w 13 0 V 3 V 4 0 0 0 w 24   Example: A =   0 0 0 w 34   0 0 w 23 0 V 1 V 2   1 w 12 ( w 13 + w 12 w 24 w 43 ) C ( w 34 w 43 ) ( w 13 w 24 + w 12 w 24 ) C ( w 34 w 43 ) 0 1 w 24 w 43 C ( w 34 w 43 ) w 24 C ( w 34 w 43 )   M =   0 0 C ( w 34 w 43 ) w 34 C ( w 34 w 43 )   0 0 w 43 C ( w 34 w 43 ) C ( w 34 w 43 ) ∞ 1 � ( w 34 w 43 ) k = with cycle contribution C ( w 34 w 43 ) = 1 − w 34 w 43 k =0 det M 1 , 2 | 3 , 4 = ( w 13 + w 12 w 24 w 43 ) C ( w 34 w 43 ) ( w 13 w 34 + w 12 w 24 ) C ( w 34 w 43 ) w 24 w 43 C ( w 34 w 43 ) w 24 C ( w 34 w 43 ) = w 13 w 24 + w 12 ( w 24 ) 2 w 43 − w 13 w 34 w 24 w 43 − w 12 ( w 24 ) 2 w 43 � � 2 1 − w 34 w 43 w 13 w 24 = 1 − w 34 w 43

  9. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Transfer matrix approach Discrete time evolution as a sequence of graphs: graph G 1 → G 2 → · · · → G n with adjacency matrix G n  w m , i , j if p = m   A ( i , m ) , ( j , p ) := 1 if p = m + 1 and i = j   0 otherwise G 2 with ( A m ) ij = w m , i , j adjacency matrix of G m G 1 (acyclic) Scalar product on Grassmann algebra: � N 1 � � � � � f , g � = d χ d χ exp − χχ f ( χ ) g ( χ ) = a i 1 ... i k b i 1 ... i k k ! k =0 1 < i 1 , ··· , i k ≤ N Transfer matrix approach to The Lindstr¨ om-Gessel-Viennot lemma � ( − 1) ǫ ( σ ) W ( P 1 ) · · · W ( P k ) = � j 1 , .., j k | (1 − A n ) − 1 · · · (1 − A 1 ) − 1 | i 1 , ..., i k � � �� � non intersecting paths transfer matrices in G 1 → G 2 → · · · → G n P l : V il ∈ G 1 → V j σ ( l ) ∈ G n Physical interpretation: Path integral for fermionic particles (fermions do not occupy the same state).

  10. Grassmann variables calculus Lindstr¨ om-Gessel-Viennot Lemma with cycles A one parameter extension of Schur’s functions Young diagrams and Schur’s functions Young diagram: λ sequence of r rows of decreasing lengths λ 1 ≥ λ 2 ≥ ... ≥ λ r Skew Young diagram: λ/µ with µ ≤ λ remove the first µ 1 ≤ λ 1 , ... , µ r ≤ λ r boxes in λ Semi Standard (skew) Young Tableau (SSYT) of shape λ/µ : fill λ/µ with integers decreasing along the columns (top to bottom) and non increasing along the rows (left to right). Skew Schur function � � x k m s λ/µ ( x ) := m , 1 ≤ m ≤ n SSYT of shape λ/µ with k m = number of times the integer m appears in the SSYT. 1 3 2 2 x 1 ( x 2 ) 3 ( x 3 ) 2 x 4 → 3 4 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend