unstable volatility the break preserving local linear
play

UNSTABLE VOLATILITY: THE BREAK PRESERVING LOCAL LINEAR ESTIMATOR - PowerPoint PPT Presentation

Motivation Volatility estimation Simulations Summary UNSTABLE VOLATILITY: THE BREAK PRESERVING LOCAL LINEAR ESTIMATOR Isabel Casas CREATES, Aarhus University joint work with Irene Gijbels K.U. Leuven 6 th Bachelier Finance Society


  1. Motivation Volatility estimation Simulations Summary UNSTABLE VOLATILITY: THE BREAK PRESERVING LOCAL LINEAR ESTIMATOR Isabel Casas – CREATES, Aarhus University joint work with Irene Gijbels – K.U. Leuven 6 th Bachelier Finance Society World Congress Toronto, 2010

  2. Motivation Volatility estimation Simulations Summary What is our work about? Aim?: estimation of discontinuous volatility functions. Discontinuities?: abrupt structural changes. Method?: nonparametric kernel estimation. Contribution?: Break preserving local linear.

  3. Motivation Volatility estimation Simulations Summary Model Y i = m ( X i ) + σ ( X i ) ǫ i ǫ ∼ i.i.d (0 , 1) Fixed design or random design. E ( ǫ | X ) = 0 , E ( ǫ 2 | X ) = 1 and E ( ǫ 4 | X ) < ∞ E ( Y | X = x ) = m ( x ) E (( Y − m ( X )) 2 | X = x ) = σ 2 ( x )

  4. Motivation Volatility estimation Simulations Summary Previous work: drift estimator

  5. Motivation Volatility estimation Simulations Summary Drift estimation Y i = m ( X i ) + 0 . 4 ǫ i with ǫ ∼ IID (0 , 1) Given a point x in the continuous part, estimator of m ( x ) ? 3.0 2.5 2.0 Y 1.5 1.0 point to estimate 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 X

  6. Motivation Volatility estimation Simulations Summary Drift estimation: centred estimator The centred estimator, ˆ m c ( x ) , is obtained as a regression using the points in a neighbourhood of x , Fan and Gijbels (1997). 3.0 2.5 2.0 Y 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 X

  7. Motivation Volatility estimation Simulations Summary Drift estimation: centred estimator 1.5 LL (centred) estimator 1.0 Y point to estimate 0.5 0.0 0.36 0.38 0.40 0.42 0.44 0.46 X

  8. Motivation Volatility estimation Simulations Summary Drift estimation: What happens at discontinuities? 3.0 point to estimate is a discontinuity 2.5 2.0 Y 1.5 1.0 0.5 0.0 0.2 0.4 0.6 0.8 1.0 X We expect the centred estimator to fall in the middle of the jump.

  9. Motivation Volatility estimation Simulations Summary Drift estimation: What happens at discontinuities? The asymmetric estimator: find two estimators, left and right, and choose appropriately, Qiu (2003). 3.0 2.5 2.0 Y 1.5 1.0 0.5 0.0 0.2 0.4 0.6 0.8 1.0 X

  10. Motivation Volatility estimation Simulations Summary Drift estimation: What happens at discontinuities? We have three estimator, which is the best choice? 3.0 right estimator 2.5 point to estimate 2.0 Y 1.5 centred estimator 1.0 left estimator 0.5 0.26 0.28 0.30 0.32 0.34 X

  11. Motivation Volatility estimation Simulations Summary Contribution: volatility estimator

  12. Motivation Volatility estimation Simulations Summary Estimation of a discontinuous volatility Y i = m ( X i ) + σ ( X i ) ǫ i ǫ ∼ i.i.d (0 , 1) r 2 | X = x ) = ˆ σ 2 ( x ) . Define ˆ r i = ( Y i − ˆ m ( X i )) . Then, E (ˆ Fan and Yao (1998): m itself is of order O ( h 2 “While the bias of ˆ 1 ) , its contribution to σ 2 ( · ) is only of o ( h 2 ˆ 1 ) ”. So, we expect to get a good estimate of the volatility even if the drift function is unknown.

  13. Motivation Volatility estimation Simulations Summary Estimation of a discontinuous volatility Do you think that the centred estimator (Fan and Yao, 1998) is a good choice to estimate a discontinuous volatility function?

  14. Motivation Volatility estimation Simulations Summary Estimation of a discontinuous volatility Do you think that the centred estimator (Fan and Yao, 1998) is a good choice to estimate a discontinuous volatility function? No, because it is not consistent at discontinuities. Solution : the break preserving local linear (BPLL) estimator.

  15. Motivation Volatility estimation Simulations Summary Estimation of a discontinuous volatility ˆ σ 2 σ 2 ˆ k ( x ) = ˆ a 0 ,k ( x ) and ˙ k = ˆ a 1 ,k � X i − x n � � 2 K k � r 2 � (ˆ a 0 ,k ( x ) , ˆ a 1 ,k ( x )) = min ˆ i − a 0 , k − a 1 ,k ( X i − x ) h 2 ( a 0 ,a 1 ) i =1 K l ( x ) K c ( x ) K r ( x ) 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 x−h/2 x x+h/2 x−h/2 x x+h/2 x−h/2 x x+h/2 left (k=l) centred (k=c) right (k=r)

  16. Motivation Volatility estimation Simulations Summary Estimation of a discontinuous volatility The expression of the three volatility estimators: � s k, 2 − s k, 1 ( X i − x ) n � X i − x σ 2 � r 2 ˆ k ( x ) = ˆ k = c, l, r i K k s k, 0 s k, 2 − s 2 h 2 k, 1 i =1 where � X i − x � � ( X i − x ) j K k s k,j = h 2 . Easy to compute. No numerical minimisation.

  17. Motivation Volatility estimation Simulations Summary Estimation of a discontinuous volatility How well are the estimators fitted to the data set? Weighted Residuals Mean Square . � X i − x � � 2 K k � n r 2 � ˆ i − ˆ a 0 , c − ˆ a 1 ,c ( X i − x ) i =1 h 2 WRMS k ( x ) = � X i − x � � n i =1 K k h 2

  18. Motivation Volatility estimation Simulations Summary Break preserving local linear The break preserving local linear estimator: σ 2 ˆ c ( x ) diff ( x ) < u       σ 2 ˆ l ( x ) diff ( x ) ≥ u and WRMS l ( x ) < WRMS r ( x )      σ 2 ˆ BP LL ( x ) = σ 2 ˆ r ( x ) diff ( x ) ≥ u and WRMS l ( x ) > WRMS r ( x )       σ 2 σ 2 ˆ l ( x ) + ˆ r ( x )    diff(x) ≥ u and WRMS l ( x ) = WRMS r ( x )  2 where diff ( x ) = max( WRMS c ( x ) − WRMS l ( x ) , WRMS c ( x ) − WRMS r ( x )) , and 0 ≤ u ≤ Q for all x and Q a constant .

  19. Motivation Volatility estimation Simulations Summary How is the WRMS for each estimator? Let [ a, b ] be the support of X and { x q } for q = 1 , . . . , m be the finite set of points where the volatility function is discontinuous. Then, two regions can be differentiated: D 1 is the region where the volatility function is continuous, � a + h 2 2 , b − h 2 � D 1 = \ D 2 2 D 2 contains the points of discontinuity and their neighbourhoods: m � � x q − h 2 2 , x q + h 2 � D 2 = 2 q =1

  20. Motivation Volatility estimation Simulations Summary How is the WRMS for each estimator? Under certain regularity conditions : For x ∈ D 1 , WRMS k ( x ) = σ 4 ( x )( E ( ǫ 4 | X ) − 1) + R k, 1 ( x )

  21. Motivation Volatility estimation Simulations Summary How is the WRMS for each estimator? Under certain regularity conditions : For x ∈ D 1 , WRMS k ( x ) = σ 4 ( x )( E ( ǫ 4 | X ) − 1) + R k, 1 ( x ) For x ∈ D 2 such that x = x q + τh 2 with τ ∈ [0 , 1 2 ] and a jump of magnitude d , σ 4 ( x )( E ( ǫ 4 | X ) − 1) + d 2 C 2 WRMS l ( x ) = l,τ + R l, 2 ( x ) σ 4 ( x )( E ( ǫ 4 | X ) − 1) + R r, 2 ( x ) WRMS r ( x ) = σ 4 ( x )( E ( ǫ 4 | X ) − 1) + d 2 C 2 WRMS c ( x ) = c,τ + R c, 2 ( x )

  22. Motivation Volatility estimation Simulations Summary How is the WRMS for each estimator? Under certain regularity conditions : For x ∈ D 1 , WRMS k ( x ) = σ 4 ( x )( E ( ǫ 4 | X ) − 1) + R k, 1 ( x ) For x ∈ D 2 such that x = x q + τh 2 with τ ∈ [ − 1 2 , 0] and a jump of magnitude d , σ 4 ( x )( E ( ǫ 4 | X ) − 1) + R l, 3 ( x ) WRMS l ( x ) = σ 4 ( x )( E ( ǫ 4 | X ) − 1) + d 2 C 2 WRMS r ( x ) = r,τ + R r, 3 ( x ) σ 4 ( x )( E ( ǫ 4 | X ) − 1) + d 2 C 2 WRMS c ( x ) = c,τ + R c, 3 ( x )

  23. Motivation Volatility estimation Simulations Summary MSE (continuous points) Under certain regularity conditions and with � 2 � µ k, 2 − µ k, 1 u � � u j K k ( u ) du and V k = K 2 µ k,j = k ( u ) du : µ k, 0 µ k, 2 − µ 2 k, 1 For x ∈ D 1 ( Continuous points ), µ 2 k, 2 − µ k, 1 µ k, 3 k ( x )) = h 2 σ 2 ( x ) 2 ¨ 1 σ 2 + o p ( h 2 1 + h 2 Bias (ˆ 2 + nh 2 ) 2 µ k, 2 µ k, 0 − µ 2 k, 1 k ( x )) = ( E ( ǫ 4 | X ) − 1) σ 4 ( x ) � � σ 2 1 Variance (ˆ V k + o p nh 2 f X ( x ) nh 2 k ( x )) = Bias 2 + Variance σ 2 MSE (ˆ

  24. Motivation Volatility estimation Simulations Summary MSE (continuous points) Under certain regularity conditions and with � 2 � µ k, 2 − µ k, 1 u � � u j K k ( u ) du and V k = K 2 µ k,j = k ( u ) du : µ k, 0 µ k, 2 − µ 2 k, 1 For x ∈ D 1 ( Continuous points ), µ 2 k, 2 − µ k, 1 µ k, 3 k ( x )) = h 2 σ 2 ( x ) 2 ¨ 1 σ 2 + o p ( h 2 1 + h 2 Bias (ˆ 2 + nh 2 ) 2 µ k, 2 µ k, 0 − µ 2 k, 1 k ( x )) = ( E ( ǫ 4 | X ) − 1) σ 4 ( x ) � � σ 2 1 Variance (ˆ V k + o p nh 2 f X ( x ) nh 2 If h 1 , h 2 → 0 , n → ∞ and nh 2 → ∞ k ( x )) = Bias 2 + Variance σ 2 MSE (ˆ

  25. Motivation Volatility estimation Simulations Summary MSE (continuous points) Under certain regularity conditions and with � 2 � µ k, 2 − µ k, 1 u � � u j K k ( u ) du and V k = K 2 µ k,j = k ( u ) du : µ k, 0 µ k, 2 − µ 2 k, 1 For x ∈ D 1 ( Continuous points ), σ 2 Bias (ˆ k ( x )) = k ( x )) = ( E ( ǫ 4 | X ) − 1) σ 4 ( x ) � � 1 σ 2 Variance (ˆ V k + o p nh 2 f X ( x ) nh 2 If h 1 , h 2 → 0 , n → ∞ and nh 2 → ∞ k ( x )) = Bias 2 + Variance σ 2 MSE (ˆ

  26. Motivation Volatility estimation Simulations Summary MSE (continuous points) Under certain regularity conditions and with � 2 � µ k, 2 − µ k, 1 u � � u j K k ( u ) du and V k = K 2 µ k,j = k ( u ) du : µ k, 0 µ k, 2 − µ 2 k, 1 For x ∈ D 1 ( Continuous points ), σ 2 Bias (ˆ k ( x )) = σ 2 Variance (ˆ k ( x )) = If h 1 , h 2 → 0 , n → ∞ and nh 2 → ∞ k ( x )) = Bias 2 + Variance σ 2 MSE (ˆ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend