union of balls and complexes
play

Union of Balls and -Complexes Jean-Daniel Boissonnat Geometrica, - PowerPoint PPT Presentation

Union of Balls and -Complexes Jean-Daniel Boissonnat Geometrica, INRIA http://www-sop.inria.fr/geometrica Winter School, University of Nice Sophia Antipolis January 26-30, 2015 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis


  1. Union of Balls and α -Complexes Jean-Daniel Boissonnat Geometrica, INRIA http://www-sop.inria.fr/geometrica Winter School, University of Nice Sophia Antipolis January 26-30, 2015 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 1 / 38

  2. Laguerre geometry Power distance of two balls or of two weighted points. → weigthed point ( p 1 , r 2 1 ) ∈ R d ball b 1 ( p 1 , r 1 ) , center p 1 radius r 1 ← → weigthed point ( p 2 , r 2 2 ) ∈ R d ball b 2 ( p 2 , r 2 ) , center p 2 radius r 2 ← π ( b 1 , b 2 ) = ( p 1 − p 2 ) 2 − r 2 1 − r 2 2 Orthogonal balls ⇒ ( p 1 − p 2 ) 2 ≤ r 2 1 + r 2 b 1 , b 2 closer ⇐ ⇒ π ( b 1 , b 2 ) < 0 ⇐ 2 ⇒ ( p 1 − p 2 ) 2 = r 2 1 + r 2 b 1 , b 2 orthogonal ⇐ ⇒ π ( b 1 , b 2 ) = 0 ⇐ 2 ⇒ ( p 1 − p 2 ) 2 ≤ r 2 1 + r 2 b 1 , b 2 further ⇐ ⇒ π ( b 1 , b 2 ) > 0 ⇐ 2 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 2 / 38

  3. Laguerre geometry Power distance of two balls or of two weighted points. → weigthed point ( p 1 , r 2 1 ) ∈ R d ball b 1 ( p 1 , r 1 ) , center p 1 radius r 1 ← → weigthed point ( p 2 , r 2 2 ) ∈ R d ball b 2 ( p 2 , r 2 ) , center p 2 radius r 2 ← π ( b 1 , b 2 ) = ( p 1 − p 2 ) 2 − r 2 1 − r 2 2 Orthogonal balls ⇒ ( p 1 − p 2 ) 2 ≤ r 2 1 + r 2 b 1 , b 2 closer ⇐ ⇒ π ( b 1 , b 2 ) < 0 ⇐ 2 ⇒ ( p 1 − p 2 ) 2 = r 2 1 + r 2 b 1 , b 2 orthogonal ⇐ ⇒ π ( b 1 , b 2 ) = 0 ⇐ 2 ⇒ ( p 1 − p 2 ) 2 ≤ r 2 1 + r 2 b 1 , b 2 further ⇐ ⇒ π ( b 1 , b 2 ) > 0 ⇐ 2 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 2 / 38

  4. Power distance of a point wrt a ball If b 1 is reduced to a point p : π ( p, b 2 ) = ( p − p 2 ) 2 − r 2 2 Normalized equation of bounding sphere : t m ′ p ∈ ∂b 2 ⇐ ⇒ π ( p, b 2 ) = 0 n ′ p ∈ int b 2 ⇐ ⇒ π ( p, b ) < 0 m n p ∈ ∂b 2 ⇐ ⇒ π ( p, b ) = 0 p p 2 p �∈ b 2 ⇐ ⇒ π ( p, b ) > 0 Tangents and secants through p π ( p, b ) = pt 2 = pm · pm ′ = pn · pn ′ Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 3 / 38

  5. Radical Hyperplane The locus of point ∈ R d with same power distance to balls b 1 ( p 1 , r 1 ) and b 2 ( p 2 , r 2 ) is a hyperplane of R d ( x − p 1 ) 2 − r 2 1 = ( x − p 2 ) 2 − r 2 π ( x, b 1 ) = π ( x, b 2 ) ⇐ ⇒ 2 − 2 p 1 x + p 2 1 − r 2 1 = − 2 p 2 x + p 2 2 − r 2 ⇐ ⇒ 2 2( p 2 − p 1 ) x + ( p 2 1 − r 2 1 ) − ( p 2 2 − r 2 ⇐ ⇒ 2 ) = 0 A point in h 12 is the center of a ball orthogonal to b 1 and b 2 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 4 / 38

  6. Radical Hyperplane The locus of point ∈ R d with same power distance to balls b 1 ( p 1 , r 1 ) and b 2 ( p 2 , r 2 ) is a hyperplane of R d ( x − p 1 ) 2 − r 2 1 = ( x − p 2 ) 2 − r 2 π ( x, b 1 ) = π ( x, b 2 ) ⇐ ⇒ 2 − 2 p 1 x + p 2 1 − r 2 1 = − 2 p 2 x + p 2 2 − r 2 ⇐ ⇒ 2 2( p 2 − p 1 ) x + ( p 2 1 − r 2 1 ) − ( p 2 2 − r 2 ⇐ ⇒ 2 ) = 0 A point in h 12 is the center of a ball orthogonal to b 1 and b 2 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 4 / 38

  7. Power Diagrams also named Laguerre diagrams or weighted Voronoi diagrams Sites : n balls B = { b i ( p i , r i ) , i = 1 , . . . n } Power distance: π ( x, b i ) = ( x − p i ) 2 − r 2 i Power Diagram: Vor ( B ) One cell V ( b i ) for each site V ( b i ) = { x : π ( x, b i ) ≤ π ( x, b j ) . ∀ j � = i } Each cell is a polytope V ( b i ) may be empty p i may not belong to V ( b i ) Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 5 / 38

  8. Weighted Delaunay triangulations B = { b i ( p i , r i ) } a set of balls Del ( B ) = nerve of Vor ( B ) : B τ = { b i ( p i , r i ) , i = 0 , . . . k }} ⊂ B ⇒ � B τ ∈ Del ( B ) ⇐ b i ∈ B τ V ( b i ) � = ∅ To be proved (next slides): under a general position condition on B , B τ − → τ = conv ( { p i , i = 0 . . . k } ) embeds Del ( B ) as a triangulation in R d , called the weighted Delaunay triangulation Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 6 / 38

  9. Characteristic property of weighted Delaunay complexes � τ ∈ Del ( B ) ⇐ ⇒ V ( b i ) � = ∅ b i ∈ B τ ∃ x ∈ R d s . t . ⇐ ⇒ ∀ b i , b j ∈ B τ , b l ∈ B \ B τ π ( x, b i ) = π ( x, b j ) < π ( x, b l ) ⇐ ⇒ ∃ ball b ( x, ω ) s . t . ∀ b i ∈ B τ , b l ∈ B \ B τ 0 = π ( b, b i ) < π ( b, b l ) Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 7 / 38

  10. The space of spheres P b ( p, r ) ball of R d h ( σ ) → point φ ( b ) ∈ R d +1 φ ( b ) = ( p, s = p 2 − r 2 ) → polar hyperplane h b = φ ( b ) ∗ ∈ R d +1 x ∈ R d +1 : x d +1 = x 2 } P = { ˆ x ∈ R d +1 : x d +1 = 2 p · x − s } σ h b = { ˆ Balls will null radius are mapped onto P h p is tangent to P at φ ( p ) . The vertical projection of h b ∩ P onto x d +1 = 0 is ∂b Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 8 / 38

  11. The space of spheres P b ( p, r ) ball of R d h ( σ ) → point φ ( b ) ∈ R d +1 φ ( b ) = ( p, s = p 2 − r 2 ) → polar hyperplane h b = φ ( b ) ∗ ∈ R d +1 x ∈ R d +1 : x d +1 = x 2 } P = { ˆ x ∈ R d +1 : x d +1 = 2 p · x − s } σ h b = { ˆ Balls will null radius are mapped onto P h p is tangent to P at φ ( p ) . The vertical projection of h b ∩ P onto x d +1 = 0 is ∂b Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 8 / 38

  12. The space of spheres P b ( p, r ) ball of R d h ( σ ) → point φ ( b ) ∈ R d +1 φ ( b ) = ( p, s = p 2 − r 2 ) → polar hyperplane h b = φ ( b ) ∗ ∈ R d +1 x ∈ R d +1 : x d +1 = x 2 } P = { ˆ x ∈ R d +1 : x d +1 = 2 p · x − s } σ h b = { ˆ Balls will null radius are mapped onto P h p is tangent to P at φ ( p ) . The vertical projection of h b ∩ P onto x d +1 = 0 is ∂b Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 8 / 38

  13. The space of spheres φ ∗ ( b ) b ( p, r ) ball of R d → point φ ( b ) ∈ R d +1 φ ( b ) = ( p, s = p 2 − r 2 ) → polar hyperplane h b = φ ( b ) ∗ ∈ R d +1 x ∈ R d +1 : x d +1 = 2 p · x − s } h b = { ˆ b x x = ( x, x 2 ) and h b is equal to The vertical distance between ˆ x 2 − 2 p · x + s = π ( x, b ) The faces of the power diagram of B are the vertical projections onto x d +1 = 0 of the faces of the polytope V ( B ) = � i h + b of R d +1 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 9 / 38

  14. The space of spheres φ ∗ ( b ) b ( p, r ) ball of R d → point φ ( b ) ∈ R d +1 φ ( b ) = ( p, s = p 2 − r 2 ) → polar hyperplane h b = φ ( b ) ∗ ∈ R d +1 x ∈ R d +1 : x d +1 = 2 p · x − s } h b = { ˆ b x x = ( x, x 2 ) and h b is equal to The vertical distance between ˆ x 2 − 2 p · x + s = π ( x, b ) The faces of the power diagram of B are the vertical projections onto x d +1 = 0 of the faces of the polytope V ( B ) = � i h + b of R d +1 Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 9 / 38

  15. Power diagrams, weighted Delaunay triangulations and polytopes D ( B ) = conv − ( ˆ V ( B ) = ∩ i φ ( b i ) ∗ + P ) Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 10 / 38

  16. Proof of the theorem B τ ⊂ B, | B τ | = d + 1 , τ = conv ( { p i , b i ( p i , r i ) ∈ B τ } ) , φ ( τ ) = conv ( { φ ( b i ) , b i ∈ B τ } ) ∃ b ( p, r ) s.t. h b = φ ( b ) ∗ = aff ( { φ ( b i ) , b i ∈ B τ } ) conv − ( { φ ( b i ) } ) φ ( τ ) ∈ D ( B ) = ∀ b j �∈ B τ , φ ( b j ) ∈ h ∗ + ⇐ ⇒ ∀ b i ∈ B τ , φ ( b i ) ∈ h b b ⇐ ⇒ ∀ b i ∈ B τ , π ( b, b i ) = 0 ∀ b j �∈ B τ , π ( b, b j ) > 0 � ⇐ ⇒ p ∈ V ( b i ) b i ∈ B τ ⇐ ⇒ τ ∈ Del ( B ) Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 11 / 38

  17. Delaunay’s theorem extended B = { b 1 , b 2 . . . b n } is said to be in general position wrt spheres if � ∃ x ∈ R d with equal power to d + 2 balls of B P = { p 1 , ..., p n } : set of centers of the balls of B Theorem If B is in general position wrt spheres, the simplicial map f : vert(Del( B )) → P provides a realization of Del( B ) Del( B ) is a triangulation of P ′ ⊆ P called the Delaunay triangulation of B Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 12 / 38

  18. Delaunay’s theorem extended B = { b 1 , b 2 . . . b n } is said to be in general position wrt spheres if � ∃ x ∈ R d with equal power to d + 2 balls of B P = { p 1 , ..., p n } : set of centers of the balls of B Theorem If B is in general position wrt spheres, the simplicial map f : vert(Del( B )) → P provides a realization of Del( B ) Del( B ) is a triangulation of P ′ ⊆ P called the Delaunay triangulation of B Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 12 / 38

  19. Power diagrams, Delaunay triangulations and polytopes If B is a set of balls in general position wrt spheres : duality V ( B ) = h + b 1 ∩ . . . ∩ h + D ( B ) = conv − ( { φ ( b 1 ) , . . . , φ ( b n ) } ) − → b n ↑ ↓ nerve Voronoi Diagram of B − → Delaunay Complex of B Winter School 2 Weighted Delaunay Complexes Sophia Antipolis 13 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend