uniform substitution for differential game logic
play

Uniform Substitution for Differential Game Logic Andr e Platzer - PowerPoint PPT Presentation

Uniform Substitution for Differential Game Logic Andr e Platzer 0.5 0.4 0.3 0.2 0.1 1.0 0.8 0.6 0.4 0.2 Andr e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR18 1 / 20 Outline Motivation 1 Game Proofs


  1. Uniform Substitution for Differential Game Logic Andr´ e Platzer 0.5 0.4 0.3 0.2 0.1 1.0 0.8 0.6 0.4 0.2 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 1 / 20

  2. Outline Motivation 1 Game Proofs Hybrid Games Differential Game Logic 2 Syntax Example: Robot Soccer Denotational Semantics Uniform Substitution 3 Mechanism Axioms Example Static Semantics 4 Axiomatization 5 Summary 6 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 1 / 20

  3. Uniform Substitution is Fundamental but Crucial Q: How to build a prover with a small soundness-critical core? A: Uniform substitution [Church] Q: Impact on hybrid systems prover core? A: 65 989 ց 1 651 LOC (2.5%) [KeYmaera X] Q: Impact on hybrid games prover core? A: months ց minutes (+10 LOC) [KeYmaera X] Q: How to prove soundness? A: Uniform substitution enables modular soundness [Modularity] Q: Biggest challenges for uniform substitution on games? A: State transition relation impossible for games [Complications] A: Transfinite induction for least fixpoint of loops >ω ω A: Conservative extension of formulas, not of axioms Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 2 / 20

  4. KeYmaera X Small Kernel for Soundness 1 700 LOC 100,000 75,000 50,000 25,000 1,652 0 X a Y l L e q t r r x a * l 2 r h a e e w r r E r e p R o e e a e u g V v o e o t K u P C R r a P i A l C a o N L c l e m a F e / H d S a a e t L r e P p m Y H C l O l M S e e y Y H b K H e a K s I Disclaimer: Self-reported estimates of the soundness-critical lines of code + rules Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 3 / 20

  5. CPS Analysis: Robot Control Challenge (Hybrid Systems) Fixed rule describing state evolution with both Discrete dynamics (control decisions) Continuous dynamics (differential equations) a 1.0 v p 0.2 8 0.8 10 t 2 4 6 8 6 0.6 � 0.2 p x 4 0.4 � 0.4 � 0.6 0.2 2 p y � 0.8 10 t 10 t 2 4 6 8 2 4 6 8 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 4 / 20

  6. CPS Analysis: Robot Control Challenge (Hybrid Systems) Fixed rule describing state evolution with both Discrete dynamics (control decisions) Continuous dynamics (differential equations) a d Ω 1.0 d x 0.2 0.5 10 t 2 4 6 8 0.5 10 t 2 4 6 8 � 0.2 � 0.5 10 t � 0.4 2 4 6 8 d y � 0.6 � 1.0 � 0.5 � 0.8 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 4 / 20

  7. CPS Analysis: Robot Control Challenge (Games) Game rules describing play evolution with both Angelic choices (player ⋄ Angel) Demonic choices (player ⋄ Demon) 8 rmbl0skZ 0,0 7 ZpZ0ZpZ0 6 0Zpo0ZpZ ⋄ \ ⋄ Tr Pl 5 o0ZPo0Zp 2,1 4 PZPZPZ0O Trash 1,2 0,0 3 Z0Z0ZPZ0 1,2 Plant 0,0 2,1 2 0O0J0ZPZ 1 SNAQZBMR 3,1 a b c d e f g h Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 5 / 20

  8. CPS Analysis: Robot Control Challenge (Hybrid Games) Game rules describing play evolution with Discrete dynamics (control decisions) Continuous dynamics (differential equations) Adversarial dynamics (Angel ⋄ vs. Demon ⋄ ) a 1.2 v 7 p 0.4 6 1.0 0.2 5 0.8 10 t 4 2 4 6 8 0.6 p x � 0.2 3 0.4 � 0.4 2 0.2 1 � 0.6 p y 10 t 10 t 2 4 6 8 2 4 6 8 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 6 / 20

  9. CPS Analysis: Robot Control Challenge (Hybrid Games) Game rules describing play evolution with Discrete dynamics (control decisions) Continuous dynamics (differential equations) Adversarial dynamics (Angel ⋄ vs. Demon ⋄ ) a d Ω 1.0 d x 0.4 0.5 0.2 0.5 10 t 10 t d y 2 4 6 8 2 4 6 8 � 0.2 � 0.5 10 t 2 4 6 8 � 0.4 � 1.0 � 0.6 � 0.5 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 6 / 20

  10. CPS Analysis: RoboCup Soccer Challenge (Hybrid Games) Game rules describing play evolution with Discrete dynamics (control decisions) Continuous dynamics (differential equations) Adversarial dynamics (Angel ⋄ vs. Demon ⋄ ) a d Ω 1.0 d x 0.4 0.5 0.2 0.5 10 t 10 t d y 2 4 6 8 2 4 6 8 � 0.2 � 0.5 10 t 2 4 6 8 � 0.4 � 1.0 � 0.6 � 0.5 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 7 / 20

  11. Differential Game Logic: Syntax Definition (Hybrid game α ) a | x := θ | ? q | x ′ = θ | α ∪ β | α ; β | α ∗ | α d Definition (dGL Formula φ ) p ( θ 1 , . . . , θ n ) | θ ≥ η | ¬ φ | φ ∧ ψ | ∀ x φ | ∃ x φ | � α � φ | [ α ] φ TOCL’15 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 8 / 20

  12. Differential Game Logic: Syntax Discrete Differential Test Choice Seq. Repeat Assign Equation Game Game Game Game Definition (Hybrid game α ) a | x := θ | ? q | x ′ = θ | α ∪ β | α ; β | α ∗ | α d Definition (dGL Formula φ ) p ( θ 1 , . . . , θ n ) | θ ≥ η | ¬ φ | φ ∧ ψ | ∀ x φ | ∃ x φ | � α � φ | [ α ] φ All Some Reals Reals TOCL’15 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 8 / 20

  13. Differential Game Logic: Syntax Game Discrete Differential Test Choice Seq. Repeat Dual Symb. Assign Equation Game Game Game Game Game Definition (Hybrid game α ) a | x := θ | ? q | x ′ = θ | α ∪ β | α ; β | α ∗ | α d Definition (dGL Formula φ ) p ( θ 1 , . . . , θ n ) | θ ≥ η | ¬ φ | φ ∧ ψ | ∀ x φ | ∃ x φ | � α � φ | [ α ] φ All Some Reals Reals TOCL’15 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 8 / 20

  14. Differential Game Logic: Syntax Game Discrete Differential Test Choice Seq. Repeat Dual Symb. Assign Equation Game Game Game Game Game Definition (Hybrid game α ) a | x := θ | ? q | x ′ = θ | α ∪ β | α ; β | α ∗ | α d Definition (dGL Formula φ ) p ( θ 1 , . . . , θ n ) | θ ≥ η | ¬ φ | φ ∧ ψ | ∀ x φ | ∃ x φ | � α � φ | [ α ] φ All Some Angel Demon Reals Reals Wins Wins TOCL’15 Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 8 / 20

  15. Example: Goalie in Robot Soccer y , g g ( x , y ) x x < 0 ∧ v > 0 ∧ y = g → � ( w := + w ∩ w := − w ); ( u := + u ∪ u := − u ); { x ′ = v , y ′ = w , g ′ = u } x 2 + ( y − g ) 2 ≤ 1 � ∗ � � Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 9 / 20

  16. Example: Goalie in Robot Soccer y , g ( v , + w ) g ( x , y ) x x < 0 ∧ v > 0 ∧ y = g → � ( w := + w ∩ w := − w ); ( u := + u ∪ u := − u ); { x ′ = v , y ′ = w , g ′ = u } x 2 + ( y − g ) 2 ≤ 1 � ∗ � � Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 9 / 20

  17. Example: Goalie in Robot Soccer y , g ( v , + w ) g ( x , y ) x ( v , − w ) x < 0 ∧ v > 0 ∧ y = g → � ( w := + w ∩ w := − w ); ( u := + u ∪ u := − u ); { x ′ = v , y ′ = w , g ′ = u } x 2 + ( y − g ) 2 ≤ 1 � ∗ � � Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 9 / 20

  18. Example: Goalie in Robot Soccer y , g ( v , + w ) + u g ( x , y ) x ( v , − w ) x < 0 ∧ v > 0 ∧ y = g → � ( w := + w ∩ w := − w ); ( u := + u ∪ u := − u ); { x ′ = v , y ′ = w , g ′ = u } x 2 + ( y − g ) 2 ≤ 1 � ∗ � � Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 9 / 20

  19. Example: Goalie in Robot Soccer y , g ( v , + w ) + u g ( x , y ) x − u ( v , − w ) x < 0 ∧ v > 0 ∧ y = g → � ( w := + w ∩ w := − w ); ( u := + u ∪ u := − u ); { x ′ = v , y ′ = w , g ′ = u } x 2 + ( y − g ) 2 ≤ 1 � ∗ � � Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 9 / 20

  20. Example: Goalie in Robot Soccer y , g ( v , + w ) + u g ( x , y ) Goalie’s x − u Secret ( v , − w ) � x � 2 ( u − w ) 2 ≤ 1 ∧ v x < 0 ∧ v > 0 ∧ y = g → � ( w := + w ∩ w := − w ); ( u := + u ∪ u := − u ); { x ′ = v , y ′ = w , g ′ = u } x 2 + ( y − g ) 2 ≤ 1 � ∗ � � Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 9 / 20

  21. Differential Game Logic: Denotational Semantics Definition (Hybrid game α ) [ [ · ] ] : HG → ( ℘ ( S ) → ℘ ( S )) ]( X ) = { ω ∈ S : ω ω [ [ θ ] ] [ [ x := θ ] ∈ X } x [ x ′ = θ ] ]( X ) = { ϕ (0) ∈ S : ϕ ( r ) ∈ X , d ϕ ( t )( x ) ] for all ζ } [ ( ζ ) = ϕ ( ζ )[ [ θ ] d t [ [? q ] ]( X ) = [ [ q ] ] ∩ X [ α ∪ β ] ]( X ) ∪ [ [ ]( X ) = [ [ α ] [ β ] ]( X ) [ [ α ; β ] ]( X ) = [ [ α ] ]([ [ β ] ]( X )) [ α ∗ ] ]( X ) = � { Z ⊆ S : X ∪ [ [ [ α ] ]( Z ) ⊆ Z } ]( X ∁ )) ∁ [ α d ] [ ]( X ) = ([ [ α ] Definition (dGL Formula φ ) [ [ · ] ] : Fml → ℘ ( S ) [ [ θ ≥ η ] ] = { ω ∈ S : ω [ [ θ ] ] ≥ ω [ [ η ] ] } ]) ∁ [ [ ¬ φ ] ] = ([ [ φ ] [ [ φ ∧ ψ ] ] = [ [ φ ] ] ∩ [ [ ψ ] ] [ � α � φ ] [ ] = [ [ α ] ]([ [ φ ] ]) ] ∁ ) ∁ [ [[ α ] φ ] ] = [ [ α ] ]([ [ φ ] Andr´ e Platzer (CMU) Uniform Substitution for Differential Game Logic IJCAR’18 10 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend