unbalanced optimal transport
play

UNBALANCED OPTIMAL TRANSPORT L ena c Chizat joint work with F-X. - PowerPoint PPT Presentation

UNBALANCED OPTIMAL TRANSPORT L ena c Chizat joint work with F-X. Vialard, G. Peyr e & B. Schmitzer CEREMADE Universit e Paris Dauphine Mokalien 2015 Introduction Static Dynamic Examples & Numerics Conclusion


  1. UNBALANCED OPTIMAL TRANSPORT L´ ena¨ ıc Chizat joint work with F-X. Vialard, G. Peyr´ e & B. Schmitzer CEREMADE Universit´ e Paris Dauphine Mokalien 2015

  2. Introduction Static Dynamic Examples & Numerics Conclusion Introduction Motivations Image matching, Machine learning, Economics, Gradient flows... 2 / 20

  3. Introduction Static Dynamic Examples & Numerics Conclusion Introduction Motivations Image matching, Machine learning, Economics, Gradient flows... Previous work Static relaxed marginal constraints ([Hanin, 1992], [Benamou, 2003]) Dynamic source term ([Piccoli and Rossi, 2013], [Mass et al., 2015], [Lombardi and Maitre, 2013]); 2 / 20

  4. Introduction Static Dynamic Examples & Numerics Conclusion Introduction Motivations Image matching, Machine learning, Economics, Gradient flows... Previous work Static relaxed marginal constraints ([Hanin, 1992], [Benamou, 2003]) Dynamic source term ([Piccoli and Rossi, 2013], [Mass et al., 2015], [Lombardi and Maitre, 2013]); Two points of view: • Standard optimal transport & relaxed marginal constraints ; • Transport + variation of mass & exact marginal constraints . 2 / 20

  5. Introduction Static Dynamic Examples & Numerics Conclusion Introduction Motivations Image matching, Machine learning, Economics, Gradient flows... Previous work Static relaxed marginal constraints ([Hanin, 1992], [Benamou, 2003]) Dynamic source term ([Piccoli and Rossi, 2013], [Mass et al., 2015], [Lombardi and Maitre, 2013]); Two points of view: • Standard optimal transport & relaxed marginal constraints ; • Transport + variation of mass & exact marginal constraints . Setting : Ω convex compact in R n . 2 / 20

  6. Introduction Static Dynamic Examples & Numerics Conclusion Outline Static Formulation Dynamic Formulation Examples & Numerics 3 / 20

  7. Introduction Static Dynamic Examples & Numerics Conclusion Outline Static Formulation Dynamic Formulation Examples & Numerics 4 / 20

  8. Introduction Static Dynamic Examples & Numerics Conclusion From standard OT... • • × δ y Ω δ x × y ) x c ( , 5 / 20

  9. Introduction Static Dynamic Examples & Numerics Conclusion From standard OT... • • Assumptions on the cost: × δ y Ω • lower bounded; δ x × y ) x c ( , • l.s.c. 5 / 20

  10. Introduction Static Dynamic Examples & Numerics Conclusion From standard OT... • • Assumptions on the cost: × δ y Ω • lower bounded; δ x × y ) x c ( , • l.s.c. Static formulation of OT: � minimize Ω 2 c ( x , y ) d γ ( x , y ) subject to (proj x ) # γ = ρ 0 (proj y ) # γ = ρ 1 5 / 20

  11. Introduction Static Dynamic Examples & Numerics Conclusion From standard OT... • • Assumptions on the cost: × m δ y Ω • lower bounded; m δ x × ) y ( x c , m . • l.s.c. also linear in m. Static formulation of OT: � Ω 2 c ( d γ minimize d λ, x , y ) d λ ( x , y ) ( γ ≪ λ ) subject to (proj x ) # γ = ρ 0 (proj y ) # γ = ρ 1 5 / 20

  12. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT • • × m y δ y Ω ) ) m x δ x × m ( y y ) , m , ( x x c ( , 6 / 20

  13. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT The cost function is • • pos. homogeneous in ( m x , m y ); • × m y δ y Ω ) ) m x δ x × m ( y y ) , m , ( x x c ( , 6 / 20

  14. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT The cost function is • • pos. homogeneous in ( m x , m y ); • subadditive in ( m x , m y ); • × m y δ y Ω ) ) m x δ x × m ( y y ) , m , ( x x c ( , 6 / 20

  15. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT The cost function is • • pos. homogeneous in ( m x , m y ); • subadditive in ( m x , m y ); • • nonnegative; × m y δ y Ω ) ) m x δ x × m ( y y ) , m , ( x x c ( , 6 / 20

  16. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT The cost function is • • pos. homogeneous in ( m x , m y ); • subadditive in ( m x , m y ); • • nonnegative; × m y δ y Ω ) ) • m x or m y negative m x δ x × m ( y y ) , m , ( x x c ( , ⇒ c = + ∞ ; 6 / 20

  17. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT The cost function is • • pos. homogeneous in ( m x , m y ); • subadditive in ( m x , m y ); • • nonnegative; × m y δ y Ω ) ) • m x or m y negative m x δ x × m ( y y ) , m , ( x x c ( , ⇒ c = + ∞ ; • lower semicontinuous 6 / 20

  18. Introduction Static Dynamic Examples & Numerics Conclusion ...to Unbalanced OT The cost function is • • pos. homogeneous in ( m x , m y ); • subadditive in ( m x , m y ); • • nonnegative; × m y δ y Ω ) ) • m x or m y negative m x δ x × m ( y y ) , m , ( x x c ( , ⇒ c = + ∞ ; • lower semicontinuous Static formulation of Unbalanced OT � Ω 2 c (( x , d γ 0 d γ ) , ( y , d γ 1 C ( ρ 0 , ρ 1 ) := minimize d γ )) d γ ( x , y ) subject to ( π x ) # γ 0 = ρ 0 ( π y ) # γ 1 = ρ 1 6 / 20

  19. Introduction Static Dynamic Examples & Numerics Conclusion Properties • R + c 1 / p Cone(Ω) := (Ω × R + ) / (Ω × { 0 } ) • × m y δ y m x δ x × Ω 7 / 20

  20. Introduction Static Dynamic Examples & Numerics Conclusion Properties • R + c 1 / p Cone(Ω) := (Ω × R + ) / (Ω × { 0 } ) • × m y δ y Theorem (Metric property) m x δ x × Ω If c 1 / p is a metric on Cone (Ω) then C 1 / p is a metric on M + (Ω) . 7 / 20

  21. Introduction Static Dynamic Examples & Numerics Conclusion Properties • R + c 1 / p Cone(Ω) := (Ω × R + ) / (Ω × { 0 } ) • × m y δ y Theorem (Metric property) m x δ x × Ω If c 1 / p is a metric on Cone (Ω) then C 1 / p is a metric on M + (Ω) . Theorem (Duality) For all ( x , y ) ∈ Ω 2 , c ( x , · , y , · ) is the support function of a closed convex nonempty set Q ( x , y ) ⊂ R 2 . 7 / 20

  22. Introduction Static Dynamic Examples & Numerics Conclusion Properties • R + c 1 / p Cone(Ω) := (Ω × R + ) / (Ω × { 0 } ) • × m y δ y Theorem (Metric property) m x δ x × Ω If c 1 / p is a metric on Cone (Ω) then C 1 / p is a metric on M + (Ω) . Theorem (Duality) For all ( x , y ) ∈ Ω 2 , c ( x , · , y , · ) is the support function of a closed convex nonempty set Q ( x , y ) ⊂ R 2 . If Q is l.s.c. in the sense of multifunctions, then � � C ( ρ 0 , ρ 1 ) = sup φ ( x ) d ρ 0 ( x ) + ψ ( y ) d ρ 1 ( y ) φ,ψ ∈ C (Ω) Ω Ω subject to ( φ ( x ) , ψ ( y )) ∈ Q ( x , y ) for all ( x , y ) ∈ Ω 2 . 7 / 20

  23. Introduction Static Dynamic Examples & Numerics Conclusion Outline Static Formulation Dynamic Formulation Examples & Numerics 8 / 20

  24. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach: standard OT • • • × × Ω v t × ρ t δ x ( t ) 9 / 20

  25. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach: standard OT • • Change of variables: ω = ρ v • × Infinitesimal cost : f ( x , ρ, ω ) × Ω v t × ρ t δ x ( t ) 9 / 20

  26. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach: standard OT • • Change of variables: ω = ρ v • × Infinitesimal cost : f ( x , ρ, ω ) × Ω v t • homogeneous in ( ρ, ω ); × ρ t δ x ( t ) 9 / 20

  27. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach: standard OT • • Change of variables: ω = ρ v • × Infinitesimal cost : f ( x , ρ, ω ) × Ω v t • homogeneous in ( ρ, ω ); × ρ t δ x ( t ) • subadditive in ( ρ, ω ); 9 / 20

  28. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach: standard OT • • Change of variables: ω = ρ v • × Infinitesimal cost : f ( x , ρ, ω ) × Ω v t • homogeneous in ( ρ, ω ); × ρ t δ x ( t ) • subadditive in ( ρ, ω ); Standard dynamic formulation � 1 � f ( x , d ρ d µ, d ω minimize d µ ) d µ ( ρ, | ω | ≪ µ ) 0 Ω subject to ∂ t ρ + ∇ · ω = 0 (weakly) (proj t =0 ) # ρ = ρ 0 , (proj t =1 ) # ρ = ρ 1 . 9 / 20

  29. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach : unbalanced OT • α t = ∂ t ρ t ρ t • • × × Ω v t × ρ t δ x ( t ) 10 / 20

  30. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach : unbalanced OT • Variables: ω = ρ v , ζ = ρα Infinitesimal cost : f ( x , ρ, ω, ζ ) α t = ∂ t ρ t ρ t • • × × Ω v t × ρ t δ x ( t ) 10 / 20

  31. Introduction Static Dynamic Examples & Numerics Conclusion A dynamic approach : unbalanced OT • Variables: ω = ρ v , ζ = ρα Infinitesimal cost : f ( x , ρ, ω, ζ ) • homogeneous in ( ρ, ω, ζ ); α t = ∂ t ρ t ρ t • • × × Ω v t × ρ t δ x ( t ) 10 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend