two photon exchange calculations versus data
play

Two-photon exchange calculations versus data l 0 l p 0 p - PowerPoint PPT Presentation

28 September, 2017 Two-photon exchange calculations versus data l 0 l p 0 p Oleksandr Tomalak Johannes Gutenberg University, Mainz, Germany 1 Scattering experiments and 2 - 2 is not among standard radiative corrections exp


  1. 28 September, 2017 Two-photon exchange calculations versus data l 0 l γ γ p 0 p Oleksandr Tomalak Johannes Gutenberg University, Mainz, Germany 1

  2. Scattering experiments and 2 Ɣ - 2 Ɣ is not among standard radiative corrections σ exp ≡ σ 1 γ (1 + δ rad + δ soft + δ 2 γ ) - charge radius insensitive to 2 Ɣ model - magnetic radius depends on 2 Ɣ model J. C. Bernauer et al. (2014) 2

  3. Scattering experiments and 2 Ɣ - 2 Ɣ is not among standard radiative corrections σ exp ≡ σ 1 γ (1 + δ rad + δ soft + δ 2 γ ) - charge radius insensitive to 2 Ɣ model - magnetic radius depends on 2 Ɣ model J. C. Bernauer et al. (2014) magnetic form factor - 2 % systematic deviation MAMI vs. world data 3

  4. µH hyperfine splitting and 2 Ɣ 1 S HFS in H µ PSI, J-PARC, RIKEN-RAL 1 ppm accuracy R. Pohl et al. (2016) - leading theoretical uncertainty: 213 ppm from 2 Ɣ , 109 ppm from 2 Ɣ C. Carlson, V. Nazaryan, K. Griffioen (2011) Cl. Peset and A. Pineda (2017) - HFS in terms of forward lepton-proton scattering amplitudes O. Tomalak (2017) - traditional decomposition: ∆ HFS = ∆ Z + ∆ R + ∆ pol Zemach term polarizability recoil correction G E , G M F 2 , g 1 , g 2 G E , G M - A1@MAMI fit allows to quantify 2 Ɣ uncertainty J. C. Bernauer et al. (2014) - proton radii, form factors and spin structure are important 4

  5. Zemach contribution - Zemach correction expanding form factors ∞ ! � Q 2 � � Q 2 � M + r 2 E r 2 G M G E ✓ ◆ ∆ Z = 8 α m r Z d Q + 4 α m r Q 0 − r 2 E − r 2 18 Q 2 M − 1 0 Q 2 µ P 3 π π Q 0 - dependence on splitting: consistency check dependence on Q 2 dependence on Q 2 0 − 7.3 0 Δ Z , Q 0 = 0 − 7.3 Δ Z , Q 0 = 0 10 3 ×Δ Z 10 3 ×Δ Z − 7.4 − 7.4 ✓ − 7.5 r E from ep scattering r E from μ H − 7.5 0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06 Q 2 0 , GeV 2 Q 2 0 , GeV 2 O. Tomalak (2017) - 95 ppm change for μ H and ep radii with Q 0 = 0.2 GeV - 3 times more precise: 140 ppm → 49 ppm - magnetic radius is important 5

  6. Hyperfine splitting and 2 Ɣ eH - compare with precise 1S HFS from eH achieved accuracy in 70th: 10 -12 − 34 − 33 − 32 − 31 Δ HFS , ppm Δ pol , Faustov et al. R E from ep, eH Δ Z + Δ R , Bodwin et al. R E from μ H Carlson et al. 1S HFS in eH - dispersive evaluation and phenomenological extractions agree 6

  7. Hyperfine splitting and 2 Ɣ eH - compare with precise 1S HFS from eH achieved accuracy in 70th: 10 -12 − 34 − 33 − 32 − 31 Δ HFS , ppm Δ pol , Faustov et al. R E from ep, eH Δ Z + Δ R , Bodwin et al. R E from μ H Carlson et al. 1S HFS in eH - dispersive evaluation and phenomenological extractions agree 7

  8. Hyperfine splitting and 2 Ɣ eH - compare with precise 1S HFS from eH achieved accuracy in 70th: 10 -12 − 34 − 33 − 32 − 31 Δ HFS , ppm Δ pol , Faustov et al. R E from ep, eH Δ Z + Δ R , Bodwin et al. R E from μ H Carlson et al. 1S HFS in eH μ H - exploit eH HFS measurements scaled by a reduced mass m r ∆ ( µ H) = m r ( m µ ) m r ( m e ) ∆ (eH)+ ∆ HFS ( m µ ) − m r ( m µ ) m r ( m e ) ∆ HFS ( m e ) − 7.0 − 6.5 − 6.0 10 3 Δ HFS with 1S HFS in eH Hagelstein et al. Carlson et al. - uncertainty: 100 ppm → 16 ppm !!! R E from ep, eH Peset et al. Martynenko et al. R E from μ H 2S HFS in μ H, CREMA Pachucki - dispersive evaluation and phenomenological extractions agree 8

  9. Hyperfine splitting and 2 Ɣ eH - compare with precise 1S HFS from eH achieved accuracy in 70th: 10 -12 − 34 − 33 − 32 − 31 Δ HFS , ppm Δ pol , Faustov et al. R E from ep, eH Δ Z + Δ R , Bodwin et al. R E from μ H Carlson et al. 1S HFS in eH μ H - exploit eH HFS measurements scaled by a reduced mass m r ∆ ( µ H) = m r ( m µ ) m r ( m e ) ∆ (eH)+ ∆ HFS ( m µ ) − m r ( m µ ) m r ( m e ) ∆ HFS ( m e ) − 7.0 − 6.5 − 6.0 10 3 Δ HFS with 1S HFS in eH Hagelstein et al. Carlson et al. - uncertainty: 100 ppm → 16 ppm !!! R E from ep, eH Peset et al. Martynenko et al. R E from μ H 2S HFS in μ H, CREMA Pachucki - dispersive evaluation and phenomenological extractions agree 9

  10. Elastic lepton-proton scattering momentum transfer Q 2 = − ( k − k 0 ) 2 photon polarization l ( k ) l ( k 0 ) parameter ε crossing-symmetric variable p 0 forward scattering p ν = ( k, p + p 0 ) ε → 1 2 - leading 2 Ɣ contribution: interference term 2 l 0 l 0 l T 1 γ < T 2 γ l 2 P spin δ 2 γ = γ γ γ P | T 1 γ | 2 p 0 p 0 spin p p - 2 Ɣ correction to cross section is given by amplitudes real parts 10

  11. Elastic lepton-proton scattering l ( k ) l ( k 0 ) K = k + k 0 P = p + p 0 2 2 p 0 p - electron-proton scattering: 3 structure amplitudes ! ˆ T non − flip = e 2 G M ( ν , Q 2 ) γ µ − F 2 ( ν , Q 2 ) P µ KP µ Q 2 ¯ l γ µ l · ¯ M + F 3 ( ν , Q 2 ) N N M 2 P.A.M. Guichon and M. Vanderhaeghen (2003) - muon-proton scattering: add helicity-flip amplitudes ! ˆ T flip = e 2 N + e 2 m K m ¯ M F 6 ( ν , Q 2 )¯ ll · ¯ l γ 5 l · ¯ F 4 ( ν , Q 2 ) + F 5 ( ν , Q 2 ) N N γ 5 N Q 2 Q 2 M M M. Gorchtein, P.A.M. Guichon and M. Vanderhaeghen (2004) - 2 Ɣ correction to cross section is given by amplitudes real parts 11

  12. non-forward scattering at low momentum transfer l 0 l γ γ p 0 p photoproduction vertex or Compton tensor box diagram assumption about the vertex 12

  13. non-forward scattering at low momentum transfer l 0 l γ γ p 0 p photoproduction vertex or Compton tensor box diagram dispersion relations assumption about the vertex based on on-shell information 13

  14. non-forward scattering proton state l 0 l γ γ p 0 p Dirac and Pauli form factors box diagram dispersion relations assumption about the vertex based on on-shell information Blunden, Melnitchouk and Tjon (2003) Borisyuk and Kobushkin (2008), O. T. and M. Vanderhaeghen (2014) 14

  15. near-forward scattering forward scattering account for all inelastic 2 Ɣ l 0 l l l γ γ γ γ p 0 p p p 15

  16. Low-Q 2 inelastic 2 Ɣ correction (e - p) l 0 - 2 Ɣ blob: near-forward virtual Compton scattering l Feshbach inelastic elastic γ γ p 0 Q 2 + b Q 2 ln Q 2 + c Q 2 ln 2 Q 2 p p δ 2 γ ∼ a R. W. Brown (1970), M. Gorchtein (2013), O. T. and M. Vanderhaeghen (2014) unpolarized proton structure M. E. Christy, P. E. Bosted (2010) Z d ν γ d Q 2 ( w 1 ( ν γ , Q 2 ) · F 1 ( ν γ , Q 2 ) + w 2 ( ν γ , Q 2 ) · F 2 ( ν γ , Q 2 )) δ 2 γ = 1.5 A1@MAMI Q 2 = 0 . 25 GeV 2 A1@MAMI 1.5 Feshbach Feshbach box diagram model box diagram model 1.0 total 2 γ total 2 γ δ 2 γ , % δ 2 γ , % 1.0 0.5 0.5 Q 2 = 0 . 05 GeV 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ε ε O. T. and M. Vanderhaeghen (2016) r E extraction ✓ - 2 Ɣ at large agrees with empirical fit ε 16

  17. Scattering experiments and 2 Ɣ - charge radius extractions: eH, eD spectroscopy ep scattering μ H, μ D spectroscopy μ p scattering ???? - μ p elastic scattering is planned by MUSE@PSI(2018-19) measure with both electron/muon charges - 2 Ɣ correction in MUSE ? 17

  18. MUSE@PSI (2018-19) estimates ( - p) µ - proton box diagram model + inelastic 2 Ɣ 1.0 box diagram model, μ - p 1.0 total, μ - p total, e - p δ 2 γ , % δ 2 γ , % 0.5 0.5 k = 115 MeV k = 210 MeV 0 0 0 0.005 0.010 0.015 0.020 0.025 0 0.02 0.04 0.06 0.08 Q 2 , GeV 2 Q 2 , GeV 2 O. T. and M. Vanderhaeghen (2014, 2016) 18

  19. MUSE@PSI (2018-19) estimates ( - p) µ - proton box diagram model + inelastic 2 Ɣ 1.0 box diagram model, μ - p 1.0 total, μ - p total, e - p δ 2 γ , % δ 2 γ , % 0.5 0.5 k = 115 MeV k = 210 MeV 0 0 0 0.005 0.010 0.015 0.020 0.025 0 0.02 0.04 0.06 0.08 Q 2 , GeV 2 Q 2 , GeV 2 O. T. and M. Vanderhaeghen (2014, 2016) - expected muon over electron ratio small inelastic 2 Ɣ small 2 Ɣ uncertainty - MUSE can test r E in one charge channel K. Mesick talk (PAVI 2014), MUSE TDR (2016) 19

  20. near-forward scattering dispersion relations (large ) (arbitrary ) ε ε l 0 l 0 l l γ γ γ γ p 0 p 0 p p X X = p + π N p + all inelastic 20

  21. Fixed-Q 2 dispersion relation framework on-shell 1 Ɣ amplitudes 2 Ɣ prediction cross section correction experimental data = F ( ν 0 + i 0) Z 1 < F ( ν ) = 2 ν unitarity d ν 0 π P ν 0 2 � ν 2 ν min disp. rel. 2 Ɣ imaginary parts 2 Ɣ real parts 21

  22. Mandelstam plot (ep) Q 2 , GeV 2 s = ( M + m π ) 2 1.0 s = M 2 0.8 0.6 unitarity relations 0.4 work in physical region 0.2 ν , GeV 2 − 0.2 0.2 0.4 elastic threshold inelastic threshold - proton intermediate state is outside physical region for Q 2 > 0 - π N intermediate state is outside physical region for Q 2 > 0.064 GeV 2 O. T. and M. Vanderhaeghen (2014) 22

  23. Analytical continuation. Elastic state - contour deformation method: O. T. and M. Vanderhaeghen (2014), Blunden and Melnitchouk (2017) angular integration deform integration contour Z d Ω to integration on curve keeping poles inside in complex plane going to unph. region unphysical physical e − µ − box - analytical continuation 0.01 = G M reproduces results ✓ in unphysical region 0 Q 2 = 0 . 1 GeV 2 ν ph − 0.02 0 0.02 0.04 0.06 0.08 ν , GeV 2 - central value: form factor fit of A1@MAMI (2014) - uncertainty: difference to 2 Ɣ with dipole form factors 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend