turb urboma omachine hinery simula y simulati tion on
play

Turb urboma omachine hinery Simula y Simulati tion on usin - PowerPoint PPT Presentation

Turb urboma omachine hinery Simula y Simulati tion on usin using g ST STAR AR-CC CCM+ M+ Usa Usage ge F From om Acr Across oss th the Ind e Industr ustry Outline Outl ine Key Objectives Conjugate heat transfer


  1. Turb urboma omachine hinery Simula y Simulati tion on usin using g ST STAR AR-CC CCM+ M+

  2. Usa Usage ge F From om Acr Across oss th the Ind e Industr ustry

  3. Outline Outl ine • Key Objectives – Conjugate heat transfer – Aeroelastic response – Performance mapping • Key Capabilities – Complex geometry handling – Conformal polyhedral meshing – Harmonic balance – Advanced post-processing • Best Practice – Mesh requirements – Solution procedure

  4. Conjugate Conjug te Hea Heat T t Tran ansf sfer er Key Capabilities • Direct CAD import • 3D CAD editing • Meshing – Polyhedral cells – Conformal interfaces – Automatic prism layer generation

  5. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities • Direct CAD import Direct import of CAD solid geometry

  6. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities • 3D CAD editing External and cooling air volumes generated using 3D CAD

  7. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities • Meshing – Automatic mesh generation • Pipelined meshing • Simple global size settings • Local refinement control • Automatic solution interpolation

  8. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities • Meshing Fewer cells required – Automatic mesh generation – Polyhedral cells

  9. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities • Meshing – Automatic mesh generation – Polyhedral cells Good for swirling flow Polyhedral cell faces are orthogonal to the flow regardless of flow direction

  10. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities High quality cells, even • Meshing with complex geometry – Automatic mesh generation – Polyhedral cells

  11. Cooled Cooled T Turb urbine ine Bl Blad ade e Key Capabilities • Meshing – Automatic mesh generation – Polyhedral cells – Conformal interfaces – Automatic prism layer generation Cells are one-to-one connected on the solid/fluid interface Fluid-side prism layers are automatically generated

  12. Aeroe Aer oelastic lastic Resp espon onse se Traditional simulation methods present many challenges • Aeroelastic analysis must be run unsteady • Traditional unsteady simulation is challenging – Very long run times – Must mesh the entire machine – Hard to specify blade vibration – Hard to extract stability information • Harmonic balance method in STAR-CCM+ resolves each of these challenges • The HB method is not available in any other commercial package

  13. Harmon Har monic Ba ic Balanc lance Basics e Basics • The harmonic balance method takes advantage of the periodic nature of a turbomachine • Solves a set of equations that converge to the periodic, unsteady solution • Full non-linear solver • All unsteady interactions captured

  14. Har Harmon monic Ba ic Balanc lance K e Key Ben ey Benefits efits Rapid calculation of unsteady solution • Unsteady simulation must be run for many time steps to converge • HB simulation converges to the unsteady solution 10x faster Red: Time Domain Blue: Harmonic Balance

  15. Har Harmon monic Ba ic Balanc lance K e Key Ben ey Benefits efits Single blade passage mesh • All blades must be meshed for an unsteady simulation • Only one blade passage must be meshed for a HB simulation, however the solution is calculated for all blades Harmonic Balance Time Domain

  16. Har Harmon monic Ba ic Balanc lance K e Key Ben ey Benefits efits Specify blade vibration – The vibration of each blade is staggered. This is known as the “Interblade phase angle” – To determine stability a simulation must be run for each phase angle – Traditional unsteady solvers require manual set up of motion for each phase angle

  17. Har Harmon monic Ba ic Balanc lance K e Key Ben ey Benefits efits Specify blade vibration  Interblade phase angle is a simple input to the HB solver

  18. Harmon Har monic Ba ic Balanc lance K e Key Ben ey Benefits efits Work per cycle calculation – Stability is determined by “Work per cycle” – Traditional unsteady solver requires the solution be saved at each time step and complex, external post processing to determine this value  Work per cycle is a simple report when using the HB solver

  19. Ex Examp ample: le: Van ane F e Flutter lutter Unsteady Pressure (Pa) Motion

  20. Ex Examp ample: le: Van ane F e Flutter lutter • Work per cycle map shows this vane will not flutter

  21. Perf erfor orman mance ce M Mapp pping ing Key Benefits • Complex geometry handling • Polyhedral cells • High quality mesh • Prism layer generation • Harmonic balance solver

  22. Perf erfor orman mance ce M Mapp pping ing Key Benefits Already discussed • Grid sequencing initialization • Efficiency optimization with Optimate+ • Turbomachinery specific post-processing

  23. Perf erfor orman mance ce M Mapp pping ing Key Benefits • Drastically reduce run time • Grid sequencing initialization • Reduce need for ramping • Increased simulation robustness Time to initialization: 80 seconds Initialization Converged Solution

  24. Perf erfor orman mance ce M Mapp pping ing Key Benefits • Efficiency optimization with Optimate+

  25. Perf erfor orman mance ce M Mapp pping ing Key Benefits • Turbomachinery specific post-processing Blade-to-blade projection

  26. Perf erfor orman mance ce M Mapp pping ing Key Benefits • Turbomachinery specific post-processing Meridional projection

  27. Perf erfor orman mance ce M Mapp pping ing Key Benefits • Turbomachinery specific post-processing Circumferential Averaging

  28. Valida alidated ted Simula Simulati tion on: : Radial Radial Compr Compress essor or • Comparison with rig measurements – Full performance curve – RPM range 4 3.8 3.6 3.4 3.2 Pressure Ratio (t/t) P2c/P1c 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Corrected Air Flow (Kg/s) � � �

  29. Valida alidated ted Simula Simulati tion on: : Radial Radial Compr Compress essor or • Installation effects – Curved inlet duct – Diffuser outlet 4 3.8 3.6 3.4 210000 RPM 3.2 3 190000 RPM 2.8 0.65 2.6 0.6 0.7 2.4 0.68 2.2 0.72 2 0.75 0.74 1.8 1.6 1.4 1.2 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

  30. Turb urboma omachine hinery Mesh y Meshing Guidelines ing Guidelines • Polyhedral mesh with extruded inlet/exit as needed

  31. Turb urboma omachine hinery Mesh y Meshing Guidelines ing Guidelines • High resolution of leading and trailing edges

  32. Turb urboma omachine hinery Mesh y Meshing Guidelines ing Guidelines • Uniform cell sizing in the primary gas path

  33. Turb urboma omachine hinery Mesh y Meshing Guidelines ing Guidelines • All y+ algorithm with y+ values less than 5

  34. Turb urboma omachine hinery Mesh y Meshing Guidelines ing Guidelines • Last prism layer similar size to the first poly cell layer Prism Layer Cells Polyhedral Cells

  35. Turb urboma omachine hinery Mesh y Meshing Guidelines ing Guidelines • At least 5 prism layers to resolve the boundary layer Velocity Profile Boundary Layer Wall

  36. Turb urboma omachine hinery So y Soluti lution on Guidelines Guidelines Reference Values • Set reference pressure to be near the operating point Initial Conditions • Set velocity to a non-zero value • Set initial pressure to the inlet or exit value, whichever is greater • Set temperature the inlet value

  37. Turb urboma omachine hinery So y Soluti lution on Guidelines Guidelines Initialization • Use grid sequencing initialization to obtain an initial condition • Ensure that each grid level converges • Initialize solution using actual operating conditions (do not ramp boundary conditions or rotation rate) Suggested GSI parameters • Max iterations per level: 200 • Convergence tolerance: 0.005 • CFL number: 20

  38. Turb urboma omachine hinery So y Soluti lution on Guidelines Guidelines Solver Settings • Use a high CFL number whenever possible, a CFL number of 20 is a good starting point • For cases with high and low speed flow regions, enable Continuity Convergence Acceleration

  39. Ov Over erview view • Key Objectives – Conjugate heat transfer – Aeroelastic response – Performance mapping • Key Capabilities – Complex geometry handling – Conformal polyhedral meshing – Harmonic balance – Advanced post-processing • Best Practice – Mesh requirements – Solution procedure

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend