tsbk01 image coding and data compression lecture 10 j
play

TSBK01 Image Coding and Data Compression Lecture 10 Jrgen - PowerPoint PPT Presentation

TSBK01 Image Coding and Data Compression Lecture 10 Jrgen Ahlberg I. Colour coding II. Moving images: From 2D to 3D? III. Hybrid coding IV. Video coding standards


  1. ������������ TSBK01 Image Coding and Data Compression Lecture 10 Jörgen Ahlberg

  2. ������� I. Colour coding II. Moving images: From 2D to 3D? III. Hybrid coding IV. Video coding standards

  3. ������� ������������� The base colours of colour television are – Red: 700 nm – Green: 546 nm – Blue: 435 nm Three base colours enough to synthesize any visible colour!

  4. ����������������� B R In this plane, the G luminance Y = R+G+B = 1

  5. ��������������� R Y G Matrix R-Y B B-Y Y = 0.30B + 0.59G + 0.11B Cr = 0.70R - 0.59G - 0.11B Cb = - 0.30R - 0.59G + 0.89B Y luminance; Cr, Cb chrominance

  6. ��������������������� � Change basis to YUV (almost the same as YCrCb). – For more info on color spaces, see colour FAQ at www.poynton.com/Poynton-color.html � The Human Visual System perceives the luminance in higher resolution than the chrominance! � Subsample the colour components. U V Y Y U V 4:2:0 4:2:2

  7. �������� ����������������������� Principle I - Extend known methods to 3D Decoding Coding Method Prestanda (bpp) Complexity complexity PCM 6 – 8 Low Low VQ 0.5 – 2 Very high Low Predictive 2 – 5 Low Low Transform 0.5 – 1.5 High High Subband/ 0.1 – 1.0 High High Wavelet Fractal 0.1 - 0.5 Very high Low

  8. �������������������� Predictive coding � 3D predictors – Motion compensated predictors – Transform coding � 3D transforms – Subband coding � 3D subband filters – BUT! The properties of the image signal are different in the temporal and the spatial domain!

  9. ����� Principle II: Hybrid methods Hybrid predictive/transform coding popular++

  10. ��������� ������������� � Combine predictive coding and transform coding. � Use predictive coding to predict the next frame in the sequence. � Use transform coding to code the prediction error.

  11. ���������������� T Q VLC T: Transform Q: Quantizer VLC: Variable Length Coder

  12. ����������������� Q VLC Q -1 P Q: Quantizer Q -1 : Inverse quantizer (reconstructor) P: Predictor

  13. ������������� T Q VLC Q -1 T -1 P

  14. ���������������� Predictively coded Intra-coded P-frames I-frame Better prediction if it can compensate for motion!

  15. �������������������

  16. ������������������� ������������� TQ VLC TQ -1 TQ: Transform + quantization P ME VLC ME: Motion estimation

  17. ������������������� � Typically one motion vector per macroblock (4 transform blocks) � Motion estimation is a time consuming process – Hierarchical motion estimation – Maximum length of motion vectors – Clever search strategies � Motion vector accuracy: – Integer, half or quarter pixel – Bilinear interpolation

  18. �������� ���������������������� Mobile Videophone ISDN Video CD Digital TV HDTV videophone over PSTN videophone 8 16 64 384 1.5 5 20 kbit/s Mbit/s Low bitrate Medium bitrate High bitrate Very low bitrate MPEG-4 H.263 H.261 MPEG-1 MPEG-2

  19. ��������� � H.26x – Standards for real time communication like video telephony and video conferencing. – Standardized by ITU. � MPEG – Standards for stored video data like movies on CDs, DVDs, etc. – Standardized by ISO.

  20. ����� � Standard for ISDN picture phones in 1990. � Motion compensation: – One motion vector per macroblock. – One macroblock = four 8 � 8 luminance blocks + two chrominance blocks (one U and one V). – Motion vectors max 15 pixels long in each direction. � Format: – CIF (352 � 288) or QCIF (176 � 144) – 7.5 – 30 frames/s. � Bitrate: Multiple of 64 kbit/s (=ISDN) including audio. � Quality: Acceptable for small motion at 128 kbit/s.

  21. ����� � Standard for picture telephones over analog subscriber lines in 1995. � Format: – CIF, QCIF or Sub-QCIF. – Usually less than 10 frames/s. � Bitrate: Typically 20 – 30 kbit/s. � Quality: With new options as good as H.261 (at half the bitrate).

  22. ���� � Moving Pictures Expert Group – a committee under ISO and IEC. � Original plan: – MPEG-1 for 1.5 Mbit/s (VideoCD) – MPEG-2 for 10 Mbit/s (Digital TV) – MPEG-3 for 40 Mbit/s (HDTV) � What happened: – MPEG-1 for 1.5 Mbit/s (Video CD) – MPEG-2 for 2 – 60 Mbit/s (TV and HDTV) – MPEG-4, -7 and -21 for other things.

  23. ������ � ISO/IEC standard in 1991. � Target bitrate around 1.5 Mbit/s (Video CD). � Properties: – Bi-directionally predictively coded frames (”B-frames”, see next slide). – More flexible than H.261. – Almost JPEG for intra frames. � Format: – CIF – No interlace. – 24 – 30 frames/s.

  24. ���������������� Predictively coded Intra-coded P-frames I-frame Bi-directionally predictively I B B P B B P B B P B B I coded B-frames Group of frames (GOF)

  25. ����������������������� � Intracoded � 8 � 8 DCT � Arbitrary weighting matrix for coefficients � Predictive coding of DC-coefficients � Uniform quantization � Zig-zag, run-level, entropy coding

  26. ����������������������� � Motion compensated prediction from I- or P-frame. � Half-pixel accuracy of motion vectors, bilinear interpolation. � Predictive coding of motion vectors. � Prediction error coded as I-frame.

  27. ����������������������� � Motion compensated prediction from two consecutive I- or P-frames. – Forward prediction only (1 vector/macroblock). – Backward prediction only (1 vector/macroblock). – Average of fwd and bwd (2 vectors/macroblock). � Otherwise as P-frames.

  28. ������ � ISO/IEC standard in 1994. � Properties: – Handles interlace (optimized for TV) – Even more flexible than MPEG-1 � Format: – 352 � 288 – 704 � 576 (25 frames/s) or 720 � 480 (30 frames/s) – 1440 � 1152 or 1920 � 1080 (HDTV) � Bitrate: – 2 – 60 Mbit/s – ~4 Mbits/s: Image quality similar to PAL / NTSC / SECAM. – 18 – 20 Mbit/s: HDTV.

  29. �������������� � Profiles: – Simple profile without B-frames. – Scaleable profiles. � Experience tells that: – At 1.5 – 2 Mbit/s MPEG-2 is not better than MPEG-1. – With manual interaction at the coding, good quality can be achieved at 3 – 4 Mbit/s. – Problems with implementing the full standard has caused compatibility problems. – Buffering and rate control hard problems.

  30. ������ � ISO/IEC standard in 1998, version 2 in 1999 � Instead of frames as coding units, MPEG-4 use audio-visual objects � Focus is not primarily on compression, but on content-based functionality � Contains definitions of: – Media object types (video, audio, text, graphics, ...) – Parameters for describing the objects – Bitstream syntax for the (compressed) parameters – Scene description, file format, streaming, synchronization, ... � Allows mixing of media objects.

  31. �������������������� �������� � Part 1, Systems, contains – The bitstream syntax and the the binary ”language” for scene description – Computer graphics object descriptions – Multiplexing, transport, ... � Part 2, Visual, contains – Video coding – Still image coding – Texture coding, ... � Part 3, Audio, contains a toolbox of audio coders for different applications � ...

  32. ����������������������� ������� ��� ������� ������ ���������� ��� ������� ������ ��������� ����������������� ��� ��� ������� ������

  33. ���������������������� � Instead of frames: Video Object Planes � Coded with Shape Adaptive DCT ������������� ��������� ��� ������ �������������� ���

  34. ������������������� TQ VLC TQ -1 ������������� �������������� Mux ��������� ������ VLC ���������� ����� VLC ������

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend