transverse force tomography
play

Transverse Force Tomography Fatma Aslan, Matthias Burkardt, Marc - PowerPoint PPT Presentation

Transverse Force Tomography Fatma Aslan, Matthias Burkardt, Marc Schlegel New Mexico State University May 14, 2019 Motivation: Why Twist 3 GPDs 2 disentangling x dependence of GPDs from QCD evolution dx GP Ds ( x,,t ) A DV CS


  1. Transverse Force Tomography Fatma Aslan, Matthias Burkardt, Marc Schlegel New Mexico State University May 14, 2019

  2. Motivation: Why Twist 3 GPDs 2 disentangling x − ξ dependence of GPDs from QCD evolution dx GP Ds ( x,ξ,t ) � ℜA DV CS − → x ± ξ ℑA DV CS − → GPDs ( ξ, ξ, t ) polynomiality insufficient to uniquely extract GPDs ( x, ξ, t ) additional input needed to disentangle x − ξ dependence → Q 2 dependence described by known evolution kernels! ֒ → use Q 2 dependence of A DV CS to further constrain GPDs ( x, ξ, t ) ֒ twist-3 effects may need to be included in such a program! nucleon structure twist-2 observables tell us what nucleon structure is twist-3 helps us understand what makes nucleon structure transverse force tomography (this talk) twist-3 PDFs: d 2 − →⊥ force twist-3 GPDs: ⊥ position space resolved force

  3. Motivation: Why Twist 3 GPDs 3 weird stuff going on at twist 3 − → Fatma Aslan discontinuities in GPDs δ ( x ) in PDFs yes, measuring twist-3 GPDs will be hard, but... lattice QCD can provide (genuine) twist 3 info much sooner

  4. Outline 4 motivation twist-3 PDFs − → ’the force’ GPDs − → 3D imaging of the nucleon → twist-3 GPDs − → distribution of ’the force’ in ֒ ⊥ plane summary

  5. Twist-3 PDFs − →⊥ Force on Quarks in DIS 5 d 2 ↔ average ⊥ force on quark in DIS from ⊥ pol target polarized DIS: σ LL ∝ g 1 − 2 Mx ν g 2 σ LT ∝ g T ≡ g 1 + g 2 1 → ’clean’ separation between g 2 and Q 2 corrections to g 1 ֒ � 1 dy g 2 = g W W g 2 with g W W + ¯ ( x ) ≡ − g 1 ( x ) + y g 1 ( y ) 2 2 x � 1 � P, S dx x 2 ¯ � q (0) γ + gF + y (0) q (0) � d 2 ≡ 3 � � g 2 ( x ) = P, S � ¯ 2 MP +2 S x color Lorentz Force on ejected quark (MB, PRD 88 (2013) 114502) √ � y � 2 F + y = F 0 y + F zy = − E y + B x = − � v × � E + � for � v = (0 , 0 , − 1) B matrix element defining d 2 ↔ 1 st integration point in QS-integral d 2 ⇒ ⊥ force ↔ QS-integral ⇒ ⊥ impulse magnitude of d 2 sign of d 2 � F y � = − 2 M 2 d 2 = − 10 GeV ⊥ deformation of q ( x, b ⊥ ) fm d 2 → sign of d q ֒ 2 : opposite Sivers |� F y �| ≪ σ ≈ 1 GeV fm ⇒ d 2 = O (0 . 01)

  6. Twist-3 PDFs − →⊥ Force on Quarks in DIS 5 d 2 ↔ average ⊥ force on quark in DIS from ⊥ pol target polarized DIS: σ LL ∝ g 1 − 2 Mx ν g 2 σ LT ∝ g T ≡ g 1 + g 2 1 → ’clean’ separation between g 2 and Q 2 corrections to g 1 ֒ � 1 dy g 2 = g W W g 2 with g W W + ¯ ( x ) ≡ − g 1 ( x ) + y g 1 ( y ) 2 2 x � 1 � P, S dx x 2 ¯ � q (0) γ + gF + y (0) q (0) � d 2 ≡ 3 � � g 2 ( x ) = P, S � ¯ 2 MP +2 S x color Lorentz Force on ejected quark (MB, PRD 88 (2013) 114502) √ � y � 2 F + y = F 0 y + F zy = − E y + B x = − � v × � E + � for � v = (0 , 0 , − 1) B magnitude of d 2 sign of d 2 � F y � = − 2 M 2 d 2 = − 10 GeV ⊥ deformation of q ( x, b ⊥ ) fm d 2 → sign of d q ֒ 2 : opposite Sivers |� F y �| ≪ σ ≈ 1 GeV fm ⇒ d 2 = O (0 . 01) consitent with experiment (JLab,SLAC), model calculations (Weiss), and lattice QCD calculations (G¨ ockeler et al., 2005)

  7. ’The Force’ in Lattice QCD (M.Engelhardt) 6 f ⊥ 1 T ( x, k ⊥ ) is k ⊥ -odd term in quark-spin averaged momentum distribution in ⊥ polarized target Force Operator W.Armstrong, F.Aslan, MB, S.Liuti, M.Engelhardt slope at length =0

  8. Twist-3 PDFs − →⊥ Force on Quarks in DIS 7 chirally even spin-dependent twist-3 PDF g 2 ( x ) MB, PRD 88 (2013) 114502 � dx x 2 g 2 ( x ) ⇒⊥ force on unpolarized quark in ⊥ polarized target ֒ → ‘Sivers force’ scalar twist-3 PDF e ( x ) MB, PRD 88 (2013) 114502 � dx x 2 e ( x ) ⇒⊥ force on ⊥ polarized quark in unpolarized target → ‘Boer-Mulders force’ ֒ chirally odd spin-dependent twist-3 PDF h 2 ( x ) M.Abdallah & MB, PRD94 (2016) 094040 dx x 2 h 2 ( x ) = 0 � ֒ → ⊥ force on ⊥ pol. quark in long. pol. target vanishes due to parity dx x 3 h 2 ( x ) ⇒ long. gradient of ⊥ force on ⊥ polarized quark in � long. polarized target → chirally odd ‘wormgear force’ ֒

  9. Physics of GPDs: 3D Imaging MB,PRD 62, 071503 (2000) 8 unpolarized proton � d 2 ∆ ⊥ (2 π ) 2 H ( x, 0 , − ∆ 2 ⊥ ) e − i b ⊥ · ∆ ⊥ q ( x, b ⊥ ) = → probabilistic interpretation ֒ F 1 ( − ∆ 2 � dxH ( x, 0 , − ∆ 2 ⊥ ) = ⊥ ) x = momentum fraction of the quark b ⊥ relative to ⊥ center of momentum small x : large ’meson cloud’ larger x : compact ’valence core’ x → 1: active quark = center of momentum → � ֒ b ⊥ → 0 (narrow distribution) for x → 1

  10. Physics of GPDs: 3D Imaging MB, IJMPA 18, 173 (2003) 9 proton polarized in +ˆ x direction � d 2 ∆ ⊥ (2 π ) 2 H q ( x, 0 , − ∆ 2 ⊥ ) e − i b ⊥ · ∆ ⊥ q ( x, b ⊥ ) = � d 2 ∆ ⊥ − 1 ∂ (2 π ) 2 E q ( x, 0 , − ∆ 2 ⊥ ) e − i b ⊥ · ∆ ⊥ 2 M ∂b y relevant density in DIS is j + ≡ j 0 + j z and left-right asymmetry from j z av. shift model-independently related to anomalous magnetic moments: � b q � � d 2 b ⊥ q ( x, b ⊥ ) b y y � ≡ dx κ q 1 = � dxE q ( x, 0 , 0) = 2 M 2 M

  11. twist-2 GPDs → Impact Parameter Dependent PDFs10 ⊥ localized state � | R ⊥ = 0 , p + , Λ � ≡ N d 2 p ⊥ | p ⊥ , p + , Λ � ⊥ charge distribution (unpolarized quarks) ρ Λ ′ Λ ( b ⊥ ) ≡ � R ⊥ = 0 , p + , Λ ′ | ¯ q ( b ⊥ ) γ + q ( b ⊥ ) | R ⊥ = 0 , p + , Λ � � � = |N| 2 q (0) γ + q (0) | p ⊥ , p + , Λ � e i b ⊥ · ( p ⊥ − p ′ d 2 p ⊥ d 2 p ′ ⊥ , p + , Λ ′ | ¯ ⊥ ) ⊥ � p ′ � � = |N| 2 2 P + d 2 P ⊥ d 2 ∆ ⊥ F Λ ′ Λ ( − ∆ 2 ⊥ ) e − i b ⊥ · ∆ ⊥ � d 2 ∆ ⊥ F Λ ′ Λ ( − ∆ 2 ⊥ ) e − i b ⊥ · ∆ ⊥ = crucial: � p ′ ⊥ , p + , Λ ′ | ¯ q (0) γ + q (0) | p ⊥ , p + , Λ � depends only on ∆ ⊥ F Λ ′ Λ ( − ∆ 2 ⊥ ) some linear combination of F 1 & F 2 - depending on Λ, Λ ′ similar for various polarized quark densities similar for x -dependent densities − → GPDs

  12. Digression: Why not 3D Fourier Transforms? 11 localized state - an attempt (for simplicity no spin) d 3 p | � √ R = 0 � ≡ N � p ) | � p � 2 ω ( � charge distribution in that state � � r ) γ 0 q ( � r ) | � R = 0 | ¯ q ( � R = 0 � d 3 p ′ d 3 p � p ′ )) F ( t ) ∼ ( ω ( � p ) + ω ( � � � p ′ ) 2 ω ( � 2 ω ( � p ) p ′ )) 2 − � ∆ 2 additional ω s in t = ( ω ( � p ) − ω ( � � d 3 ∆ and � d 3 P → not possible to factorize into ֒ p ′ ) and call it Breit ’frame’ except if you simply assume ω ( � p ) = ω ( � not possible to construct state in which the charge distribution equals ∆ 2 ) e − i� d 3 ∆ F ( − � � ∆ · � r the 3D Fourier transform of the form factor

  13. Transverse Force Tomography F.Aslan,MB,M.Schlegel arxiv:1904.03494 12 ⊥ force distribution (unpolarized quarks) F i Λ ′ Λ ( b ⊥ ) ≡ � R ⊥ = 0 , p + , Λ ′ | ¯ q ( b ⊥ ) γ + gF + i ( b ⊥ ) q ( b ⊥ ) | R ⊥ = 0 , p + , Λ � � � q (0) γ + gF + i (0) q (0) | p ⊥ , p + , Λ � e i b ⊥ · ( p ⊥ − p ′ = |N| 2 d 2 p ⊥ d 2 p ′ ⊥ � p ′ ⊥ , p + , Λ | ¯ ⊥ ) Form factors of qgq correlator (F.Aslan, M.B., M.Schlegel arXiv:1904.03494) � P + M γ + ∆ i M Φ 1 ( t )+ P + � p ′ , λ ′ | ¯ q (0) γ + igF + i (0) q (0) | p, λ � = ¯ u ( p ′ , λ ′ ) M iσ + i Φ 2 ( t ) + P + iσ +∆ Φ 3 ( t ) + P + ∆ + iσ i ∆ M Φ 4 ( t ) + P ⊥ ∆ + iσ +∆ ∆ i � Φ 5 ( t ) u ( p, λ ) . M 3 M M M M M crucial: for p + ′ = p + , � p ′ , λ ′ | ¯ q (0) γ + igF + i (0) q (0) | p, λ � only depends on ∆ ⊥ → similar to ⊥ charge density ... ֒

  14. Transverse Force Tomography F.Aslan,MB,M.Schlegel arxiv:1904.03494 12 ⊥ force distribution (unpolarized quarks) F i Λ ′ Λ ( b ⊥ ) ≡ � R ⊥ = 0 , p + , Λ ′ | ¯ q ( b ⊥ ) γ + gF + i ( b ⊥ ) q ( b ⊥ ) | R ⊥ = 0 , p + , Λ � � � q (0) γ + gF + i (0) q (0) | p ⊥ , p + , Λ � e i b ⊥ · ( p ⊥ − p ′ = |N| 2 d 2 p ⊥ d 2 p ′ ⊥ � p ′ ⊥ , p + , Λ | ¯ ⊥ ) Form factors of qgq correlator (F.Aslan, M.B., M.Schlegel arXiv:1904.03494) � P + M γ + ∆ i M Φ 1 ( t )+ P + � p ′ , λ ′ | ¯ q (0) γ + igF + i (0) q (0) | p, λ � = ¯ u ( p ′ , λ ′ ) M iσ + i Φ 2 ( t ) + P + iσ +∆ Φ 3 ( t ) + P + ∆ + iσ i ∆ M Φ 4 ( t ) + P ⊥ ∆ + iσ +∆ ∆ i � Φ 5 ( t ) u ( p, λ ) . M 3 M M M M M Φ 1 unpolarized target axially symmetric ’radial’ force

  15. Transverse Force Tomography F.Aslan,MB,M.Schlegel arxiv:1904.03494 12 ⊥ force distribution (unpolarized quarks) F i Λ ′ Λ ( b ⊥ ) ≡ � R ⊥ = 0 , p + , Λ ′ | ¯ q ( b ⊥ ) γ + gF + i ( b ⊥ ) q ( b ⊥ ) | R ⊥ = 0 , p + , Λ � � � q (0) γ + gF + i (0) q (0) | p ⊥ , p + , Λ � e i b ⊥ · ( p ⊥ − p ′ = |N| 2 d 2 p ⊥ d 2 p ′ ⊥ � p ′ ⊥ , p + , Λ | ¯ ⊥ ) Form factors of qgq correlator (F.Aslan, M.B., M.Schlegel arXiv:1904.03494) � P + M γ + ∆ i M Φ 1 ( t )+ P + � p ′ , λ ′ | ¯ q (0) γ + igF + i (0) q (0) | p, λ � = ¯ u ( p ′ , λ ′ ) M iσ + i Φ 2 ( t ) + P + iσ +∆ Φ 3 ( t ) + P + ∆ + iσ i ∆ M Φ 4 ( t ) + P ⊥ ∆ + iσ +∆ ∆ i � Φ 5 ( t ) u ( p, λ ) . M 3 M M M M M Φ 2 ⊥ polarized target; force ⊥ to target spin → spatially resolved Sivers force ֒

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend