towards improved overclosure bounds for wimp like dark
play

Towards improved overclosure bounds for WIMP-like dark matter models - PowerPoint PPT Presentation

Towards improved overclosure bounds for WIMP-like dark matter models Simone Biondini Albert Einstein Center - Institute for Theoretical Physics, Universit at Bern Strong and Electroweak Matter Conference, Barcelona Tuesday, June 26 in


  1. Towards improved overclosure bounds for WIMP-like dark matter models Simone Biondini Albert Einstein Center - Institute for Theoretical Physics, Universit¨ at Bern Strong and Electroweak Matter Conference, Barcelona Tuesday, June 26 in collaboration with Mikko Laine JHEP 1804 (2018) 072 S. Biondini (AEC) SEWM 2018, Barcelona 1 / 46

  2. Outline 1 Motivation and Introduction 2 Non-relativistic WIMPs in a thermal bath 3 Majorana DM with strongly interacting mediators 4 Conclusions and Outlook S. Biondini (AEC) SEWM 2018, Barcelona 2 / 46

  3. Motivation and Introduction Evidence for Dark Matter Star-velocity distribution in a galaxy V. Rubin and W. Ford (1970) 1 Strong and weak gravitational lensing J. K. Adelman-McCarthy et al. (2005) 2 Even at cosmological scales from the Cosmic Microwave Background P.A.R. Ade et al. 1502.01589 early universe before recombination : baryon-photon fluid oscillations Ω m , Ω b and photons dynamics of the fluid: gravitational collapse vs expansion due to pressure Ω dm h 2 = 0 . 1186 ± 0 . 0020 Ω b h 2 = 0 . 02226 ± 0 . 00023 Ω b consistent with BBN predictions! S. Biondini (AEC) SEWM 2018, Barcelona 3 / 46

  4. Motivation and Introduction Weakly interacting massive particles Many candidates: axions, sterile neutrinos, composite dark matter ... G. Gelmini 1502.01320 WIMPs are attractive for some reasons arise to solve problems within particle physics realm (SUSY, extra dimensions...) relic abundance from freeze-out (Ω dm h 2 today) testable experimentally with direct, indirect and collider searches 10 1 non � pert. ATLAS jets � ETmiss 10 0 XENON100 100 m Η � m Χ � 1 H . E . S . S . 25. ATLAS Monojet 10 � 1 LUX 50. Η � squark 100 No thermal WIMP How reliable is the curve obtained from the 10 � 2 10 2 10 3 cosmological relic abundance? m Χ � GeV � 1403.4634 S. Biondini (AEC) SEWM 2018, Barcelona 4 / 46

  5. Motivation and Introduction Wimp relic density and overclosure bound χ in equilibrium in the early universe: χχ ↔ f ¯ f Recombination f ¯ f → χχ is Boltzmann suppressed at T < M dn χ n 2 χ − n 2 � � dt + 3 Hn χ = −� σ v � χ, eq T / M ⇒ � σ v � ≈ � a + bv 2 + . . . � = a + 3 � σ v � ≈ α 2 � 2 b T v ≈ M + . . . , M 2 new variables Y χ = n χ / s and z = M / T -3 M M = 0.5 TeV, ∆ M = 10 -8 10 λ 3,4,5 = 0 Ω dm h 2 λ 3,4,5 = 1 -10 10 λ 3,4,5 = π overclosure Y -12 10 0 . 1186 -14 10 viable Y eq -16 10 1 2 3 10 10 10 M exp . bounds z = M / T S. Biondini (AEC) SEWM 2018, Barcelona 5 / 46

  6. Non-relativistic WIMPs in a thermal bath Wimp in a thermal bath χ are non-relativistic and have time to experience several interactions in the freeze-out regime it holds M ≫ π T , gT , Mv , Mv 2 a) Mass correction b) Sommerfeld effect c) Interaction rate and bound states How does all this reflect into the χχ annihilation? . . . soft hard S. Biondini (AEC) SEWM 2018, Barcelona 6 / 46

  7. Non-relativistic WIMPs in a thermal bath Factorizing the annihilation rate Annihilation of a heavy pair: DM-DM, with energies ∼ 2 M (forget about T ) O = i c M 2 φ † φ † φφ , c ≈ α 2 (inclusive s-wave annihilation ) G. T. Bodwin, E. Braaten and G. P. Lepage hep-ph/9407339 c M ≫ T ⇒ ∆ x ∼ 1 M ≪ 1 1 k ∼ T local and insensitive to the thermal scales we want to ”thermal-average” . . . � φ † φ † φφ � T soft hard S. Biondini (AEC) SEWM 2018, Barcelona 7 / 46

  8. Non-relativistic WIMPs in a thermal bath Beyond the free case: the spectral function Compare Boltzmann equation with linear response theory ( ∂ t + 3 H ) n = −� σ v � ( n 2 − n 2 eq ) and ( ∂ t + 3 H ) n = − Γ chem ( n − n eq ) � σ v � ≡ Γ chem 2 n eq ⇒ � σ v � = 4 c where γ = � φ † φ † φφ � T M 2 γ n 2 eq D. Bodeker and M. Laine 1205.4987; S. Kim and M. Laine 1602.08105; S. Kim and M. Laine 1609.00474 S. Biondini (AEC) SEWM 2018, Barcelona 8 / 46

  9. Non-relativistic WIMPs in a thermal bath Beyond the free case: the spectral function Compare Boltzmann equation with linear response theory ( ∂ t + 3 H ) n = −� σ v � ( n 2 − n 2 eq ) and ( ∂ t + 3 H ) n = − Γ chem ( n − n eq ) � σ v � ≡ Γ chem 2 n eq ⇒ � σ v � = 4 c where γ = � φ † φ † φφ � T M 2 γ n 2 eq D. Bodeker and M. Laine 1205.4987; S. Kim and M. Laine 1602.08105; S. Kim and M. Laine 1609.00474 thermal expectation value of the operators that annihilate/create a DM-DM pair γ = 1 � e − E m / T � m | φ † φ † | n �� n | φφ | m � Z m , n any correlator in equilibrium can be expressed in terms of a spectral function � ∞ � e i ω t − i k · r � 1 � � ( φφ )( t , r ) , ( φ † φ † )(0 , 0 ) ρ ( ω, k ) = dt � T 2 −∞ r � ∞ d ω � π e − ω ρ ( ω, k ) + O ( e − 4 M / T ) , α 2 M ≪ Λ ∼ M γ = T 2 M − Λ k S. Biondini (AEC) SEWM 2018, Barcelona 8 / 46

  10. Non-relativistic WIMPs in a thermal bath From ρ to a Schr¨ odinger equation ρ is extracted from the imaginary part of a Green’s function Y. Burnier, M. Laine and M. Vepsalainen, (2007) E m ≡ ω = E ′ + 2 M + k 2 H = − ∇ 2 4 M , M + V ( r ) H − i Γ − E ′ � G ( E ′ ; r , r ′ ) = N δ 3 ( r − r ′ ) , r , r ′ → 0 Im G ( E ′ ; r , r ′ ) = ρ ( E ′ ) � lim S. Biondini (AEC) SEWM 2018, Barcelona 9 / 46

  11. Non-relativistic WIMPs in a thermal bath From ρ to a Schr¨ odinger equation ρ is extracted from the imaginary part of a Green’s function Y. Burnier, M. Laine and M. Vepsalainen, (2007) E m ≡ ω = E ′ + 2 M + k 2 H = − ∇ 2 4 M , M + V ( r ) H − i Γ − E ′ � G ( E ′ ; r , r ′ ) = N δ 3 ( r − r ′ ) , r , r ′ → 0 Im G ( E ′ ; r , r ′ ) = ρ ( E ′ ) � lim � 3 � ∞ dE ′ T ρ ( E ′ ) → γ free = n 2 � MT π e − E ′ c 2 e − 2 M eq γ ≈ ⇒ � σ v � = T M 2 2 π 4 − Λ ρ ω 2 M S. Biondini (AEC) SEWM 2018, Barcelona 9 / 46

  12. Non-relativistic WIMPs in a thermal bath From ρ to a Schr¨ odinger equation ρ is extracted from the imaginary part of a Green’s function Y. Burnier, M. Laine and M. Vepsalainen, (2007) E m ≡ ω = E ′ + 2 M + k 2 H = − ∇ 2 4 M , M + V ( r ) H − i Γ − E ′ � G ( E ′ ; r , r ′ ) = N δ 3 ( r − r ′ ) , r , r ′ → 0 Im G ( E ′ ; r , r ′ ) = ρ ( E ′ ) � lim � 3 � ∞ dE ′ � MT π e − E ′ 2 e − 2 M T ρ ( E ′ ) γ ≈ T 2 π − Λ ρ ∼ 2 M − α 2 M ω 2 M S. Biondini (AEC) SEWM 2018, Barcelona 10 / 46

  13. Non-relativistic WIMPs in a thermal bath From ρ to a Schr¨ odinger equation ρ is extracted from the imaginary part of a Green’s function Y. Burnier, M. Laine and M. Vepsalainen, (2007) E m ≡ ω = E ′ + 2 M + k 2 H = − ∇ 2 4 M , M + V ( r ) H − i Γ − E ′ � G ( E ′ ; r , r ′ ) = N δ 3 ( r − r ′ ) , r , r ′ → 0 Im G ( E ′ ; r , r ′ ) = ρ ( E ′ ) � lim � 3 � ∞ dE ′ � MT π e − E ′ 2 e − 2 M T ρ ( E ′ ) γ ≈ T 2 π − Λ ρ ∼ 2 M − α 2 M ω 2 M S. Biondini (AEC) SEWM 2018, Barcelona 11 / 46

  14. Non-relativistic WIMPs in a thermal bath Summary of the theoretical framework relic density can be computed in some steps M. Laine and S.‘Kim 1609.00474 Calculate the matching coefficients from the hard annihilation process, E ∼ 2 M Compute the static potentials and thermal widths induced by the particle exchanged by the heavy ones Extract the spectral function ⇒ annihilation rate Solve the Boltzmann equation with the thermal cross section Thermal Bound state SM dynamics potentials formation at T � = 0 � σv � T ann Boltzmann equation Overclosure bounds S. Biondini (AEC) SEWM 2018, Barcelona 12 / 46

  15. Majorana DM with strongly interacting mediators Majorana DM and QCD colored scalar To link effectively a BSM theory and dark matter example: SUSY has a rather large parameter space Constraints are set on a simple model that captures the most relevant physics A. De Simone and T. Jacques 1603.08002 Majorana fermion DM + Coloured mediator L = L SM + L χ + L η + L int χ = 1 ∂χ − M � 2 L η = ( D µ η ) † ( D µ η ) − M 2 � L M η η † η − λ 2 η † η χ i / 2 ¯ 2 ¯ χχ , L int = − y η † ¯ χ P R q − y ∗ ¯ qP L χη − λ 3 η † η H † H M. Garny, A. Ibarra and S. Vogl 1503.01500 the annihilation of χχ pairs is p-wave suppressed J. Edsj¨ o and P. Gondolo hep/ph-9704361 ⇒ the role of the (co)annihilating η is important and driven by QCD � σ v � ≈ � σ v � χχ + e − ∆ M M � σ v � ηχ + e − 2 ∆ M M � σ v � ηη S. Biondini (AEC) SEWM 2018, Barcelona 13 / 46

  16. Majorana DM with strongly interacting mediators Non-relativistic fields � φ e − iMt + ϕ † e iMt � and χ = ( ψ e − iMt , − i σ 2 ψ ∗ e iMt ) 1 Again η = √ 2 M � � � c 1 ψ † p ψ † ψ † p φ † α ψ p φ α + ψ † p ϕ † L abs = i q ψ q ψ p + c 2 α ψ p ϕ α �� � c 3 φ † α ϕ † α ϕ β φ β + c 4 φ † α ϕ † β ϕ γ φ δ T a αβ T a φ † α φ † β φ β φ α + ϕ † α ϕ † + γδ + c 5 β ϕ β ϕ α Simplification in the Majorana fermion sector: ψ † p ψ † r ψ s ψ q σ k pq σ k rs = − 3 ψ † p ψ † q ψ q ψ p a possible spin-dependent operator is reduced to a spin-independent one matching the c i with standard T = 0 techniques S. Biondini (AEC) SEWM 2018, Barcelona 14 / 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend