topological pumps and topological quasicrystals
play

Topological pumps and topological quasicrystals PRL 109 , 106402 - PowerPoint PPT Presentation

Topological pumps and topological quasicrystals PRL 109 , 106402 (2012); PRL 109 , 116404 (2012); PRL 110 , 076403 (2013); PRL 111 , 226401 (2013); PRB 91 , 064201 (2015); PRL 115 , 195303 (2015), PRA 93 , 043827 (2016), PRB 93 , 245113 (2016), Nat.


  1. Topological pumps and topological quasicrystals PRL 109 , 106402 (2012); PRL 109 , 116404 (2012); PRL 110 , 076403 (2013); PRL 111 , 226401 (2013); PRB 91 , 064201 (2015); PRL 115 , 195303 (2015), PRA 93 , 043827 (2016), PRB 93 , 245113 (2016), Nat. Phys. 12 , 350 (2016); Nat. Phys. 12 , 624 (2016); Nature 553 , 55 (2018), Nature 553 , 59 (2018) arXiv:1802.04173, arXiv:1804.01871, arXiv:1805.05209 & arXiv:1805.10670

  2. Outline Quantum Hall effect Topological pumps Photonic topological pump (1D) Atomic pumps Quasiperiodic systems Four-dimensional QHE

  3. Quantum Hall effect • Landau gauge: 2   2 k 1 B p     2 y   x m x  a c I 2 2   m m a a c y E   2   ( ) ip y x p l p , ( , ) (...) n x y e y e y y x • Quantized Hall conductance 2 e E nk    xy h n = 4 • n = 3 Chern number ω c   n = 2 2 2   μ    d p d p (p ,p ) n = 1 x y x y P 0 0   1   p y   (p ,p ) Tr , P P P     x y p p 2     i x y | | P n n n

  4. Quantum Hall effect • Landau gauge: 2   2 k 1 B p     2 y   x m x  a c 2 2   m m a a c y   2   ( ) ip y x p l p , ( , ) (...) n x y e y e y y x bulk edge • Confining potential: E nk Chiral edge modes n = 4 n = 3 ω c • Chern number n = 2 μ Number of chiral edge modes n = 1 p y See Yasuhiro ’ s talk and references therein

  5. Laughlin/Halperin ’ s argument B • Landau gauge: 2   2 k 1 p     2 y   x m x  a c 𝜖𝜚/𝜖𝑢 2 2   m m a a c   2   ( ) ip y x p l p , ( , ) (...) n x y e y e y y bulk • Chern number E nk Number of charges moved over a pump cycle μ p y

  6. Laughlin/Halperin ’ s argument B • Landau gauge: 2   2 k 1 p     2 y   x m x  a c 𝜖𝜚/𝜖𝑢 2 2   m m a a c   2   ( ) ip y x p l p , ( , ) (...) n x y e y e y y bulk • Chern number E nk Number of charges moved over a pump cycle μ p y

  7. Hofstadter model x y • Hamiltonian: b t y      t x      † 2 † i bx . . . . t c c h c t e c c h c   x,y 1,y x,y x,y 1 x x y , x y     †     † . . 2 cos(2 ) t c c h c t bx k c c  x, 1, x, x, k x k y y k k y y y y x, k y • Spectrum: b = 8/5 Harper, PPSL A 68 , 874 (1955) 2.5 4 Azbel, JETP 19 , 634 (1964) Hofstadter, PRB 14 , 2239 (1976) 3   ik y p E c e y E c  q- 1 gaps b x,y x, k y 2 q k y 1 -2.5 2 π 0 k y b

  8. Hofstadter model x y • Hamiltonian: b t y    t x      † † . . 2 cos(2 ) t c c h c t bx k c c  x, 1, x, x, x k x k y y k k y y y y , x k y • Quantized Hall conductance: TKNN, PRL 49 , 405 (1982) 2 e    b = 8/5 xy h 2.5 4 • Chern numbers:   3 2 2      d p d p (p ,p ) E x y x y μ 2 0 0   P 1 1     (p ,p ) Tr , P P P -2.5    2 π x y p p 0 k y 2 i x y

  9. Hofstadter model x y • Hamiltonian: b t y    t x      † † . . 2 cos(2 ) t c c h c t bx k c c  x, 1, x, x, x k x k y y k k y y y y , x k y • Quantized Hall conductance: TKNN, PRL 49 , 405 (1982) 2 e D. Osadchy and J. E. Avron, J. Math. Phys. 42 , 5665 (2001)    b = 8/5 xy r h 2.5    2 4 • Chern numbers: 4   p 1  3 b 3 q E E    1 μ 2    2 r p qm r r   P 2 1 1 q -2.5   | | 2 π 0 k y b r 2

  10. Topological pump (1+1) • Harper model as a topological pump: D. J. Thouless, Phys. Rev. B 27 , 6083 (1983)           † † ( ) . . 2 cos(2 ) H t c c h c t bx c c  1 x x x y x x x       2 / 7 x t x • Spectrum: x b = 8/5 2.5 Topological edge states of a 2D crystal E Boundary states of a 1D topological pump -2.5  2 π 0

  11. Outline Quantum Hall effect Topological pumps Photonic topological pump (1D) Atomic pumps Quasiperiodic systems Four-dimensional QHE

  12. Photonic waveguide array • A waveguide:     i V z z • A photonic crystal: Lahini et al. , PRL 103, 013901 (2009)         i t t V    1 1 1 z x x x x x x x z tight binding model propagation replaces time x

  13. Photonic waveguide array • Diagonal modulation: z         ( ) i t V   1 1 z x x x x x x • Off-diagonal modulation:       i t t    z 1 1 1 z x x x x x x

  14. Experiment • Setup: input: single site output: distribution z • Evolution: overlap with eigenstates expansion according to eigenstates x • No chemical potential

  15. Generalizations – Other 1D models • Off-diagonal Harper model:           † ( ) 2 cos(2 ) . . H t t bx c c h c    1 x xy x x x n 2.5 x E y b t xy -2.5 t x ϕ 2 π 0 Phys. Rev. Lett. 109 , 106402 (2012)

  16. Experiment 1: adiabatic pumping (1D+1) • density Pumping: 2.5 x density E x density -2.5 ϕ 2 π 0 x    • Adiabatic pumping: ( ) H z z off-diagonal intensity z           † ( ) 2 cos(2 ) . . H t t bx c c h c   n  1 x xy x x x Phys. Rev. Lett. 109 , 106402 (2012)

  17. Outline Quantum Hall effect Topological pumps Photonic topological pump (1D) Atomic pumps Quasiperiodic systems Four-dimensional QHE

  18. Quasiperiodic models Systems with long-range order but no translation symmetry. • 1D Fibonacci chain: L L → LS LS S → L LSL LSLLS LSLLSLSL       1 1 • 2D Penrose tiling:      2  ( 2) ( 1)  1 d n n         n       1 1

  19. Long-range order vs. translations • Harper (or Aubry-André) model:           † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c  n n 1 n n n • Long-range order vs. translations n  1..30  cos(2 ) bn n  101..130 The order determines the system up to translations of the origin (which have no effect on bulk properties). Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)

  20. Long-range order vs. translations • Harper (or Aubry-André) model:           † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c  n n 1 n n n • Translations vs. ϕ   1 2        b = p/q:   (2 )mod 2 0, 2 , 2 , bn   q q     irrational b: (2 )mod2 [0,2 ] bn For the latter ϕ has no effect on bulk properties Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)

  21. Long-range order vs. translations • Harper (or Aubry-André) model:           † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c  n n 1 n n n • Translations vs. ϕ ϕ → ϕ + ε is equivalent to n → n + n ε      †      † ( ) ( ) ( ) T E l l T H T H T     l l    ( ) l E T l T l   l independent of ϕ → flat bulk bands E 2 π ϕ 0 Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)

  22. Long-range order vs. translations • Harper (or Aubry-André) model:           † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c  n n 1 n n n • Projector P:             † † ( ) ( ) ( ) ( ) P ~ H P T P T P T P T       • Berry curvature     1 1                            ( ( , ) , ) Tr Tr ( , ) ( ), ( ) P P P P P P           2 2 i i μ     1 Tr 1 Tr                     † ( ) ( ) ( ), ( ), ( ) ( ) c( 0, ) T P P P P P P T P             2 2 i i 2 π ϕ 0 Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend