tomographic inversion
play

Tomographic inversion Velocity determination with CRS attributes: - PowerPoint PPT Presentation

CO 2 CRS: Tomography T. Klver & J. Mann Introduction Tomographic inversion Velocity determination with CRS attributes: NIP waves & velocities CRS tomography Inversion procedure data extraction and preconditioning First example


  1. CO 2 CRS: Tomography T. Klüver & J. Mann Introduction Tomographic inversion Velocity determination with CRS attributes: NIP waves & velocities CRS tomography Inversion procedure data extraction and preconditioning First example Preconditioning. . . Basics Tilman Klüver and Jürgen Mann Smoothing Extraction Data example Conclusions Geophysical Institute, University of Karlsruhe (TH) Acknowledgments 09/22/2006

  2. CO 2 CRS: Tomography Overview T. Klüver & J. Mann Introduction Velocity determination Introduction NIP waves & velocities CRS tomography Inversion procedure First example Velocity determination with 3D CRS attributes Preconditioning. . . Basics Smoothing Extraction Attribute preconditioning and extraction Data example Conclusions Synthetic data example Acknowledgments Conclusions Acknowledgments

  3. CO 2 CRS: Tomography Introduction T. Klüver & J. Mann Introduction Velocity determination Construction of a background/migration velocity model NIP waves & velocities CRS tomography is one of the key aims of seismic imaging schemes. Inversion procedure First example Preconditioning. . . Basics ◮ Problems with conventional reflection tomography: Smoothing Extraction identifying and picking events in the prestack data Data example ◮ 3D velocity models for depth imaging Conclusions Acknowledgments ◮ Tomographic approach based on CRS stack results ◮ Advantages: ◮ picking in simulated ZO volume of high S/N ratio ◮ pick locations independent of each other ◮ very few picks required

  4. CO 2 CRS: Tomography NIP waves and velocities T. Klüver & J. Mann ( M h p ξ , ) T , , ξ ξ Introduction ξ ξ ξ Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example Preconditioning. . . Basics Smoothing Extraction Data example Conclusions NIP Acknowledgments CRS attributes M h and p ξ at ( t 0 , ξ ξ ξ ) describe second-order traveltime approximation of emerging NIP wave.

  5. CO 2 CRS: Tomography NIP waves and velocities T. Klüver & J. Mann ( M h p ξ , ) T , , ξ ξ Introduction ξ ξ ξ Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example Preconditioning. . . Basics Smoothing Extraction Data example Conclusions NIP Acknowledgments In consistent velocity models, NIP waves focus at zero traveltime.

  6. CO 2 CRS: Tomography Tomography with CRS attributes T. Klüver & J. Mann Introduction Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example Find a velocity model in which all considered NIP Preconditioning. . . waves, described by kinematic wavefield attributes, Basics Smoothing are correctly modeled. Extraction Data example For tomographic inversion in 3D, one azimuth φ of Conclusions M h is required: M φ . Acknowledgments For multi-azimuth data the full Matrix M h is to be preferred.

  7. CO 2 CRS: Tomography 3D tomography with CRS attributes T. Klüver & J. Mann Introduction Data and model components Velocity determination NIP waves & velocities CRS tomography Inversion procedure (p ,p ) M First example ξ ξ ξ ξ y x τ Preconditioning. . . (ξ ,ξ ) Basics Smoothing x y Extraction Data example Conclusions v(x,y,z) (e ,e ) Acknowledgments x y (x,y,z) NIP Data: Model: ( τ , M 11 , M 12 , M 22 , ( x , y , z , e x , e y ) i , v jkl p ξ x , p ξ y , ξ x , ξ y ) i v jkl : B-spline τ = t 0 / 2 coefficients

  8. CO 2 CRS: Tomography Inversion procedure T. Klüver & J. Mann Introduction Velocity determination NIP waves & velocities ◮ nonlinear least-squares problem: CRS tomography Inversion procedure ◮ iterative solution, local linearization First example ◮ τ , p ξ x , p ξ y , ξ x , ξ y Preconditioning. . . Basics from kinematic ray tracing Smoothing ◮ M h = DB − 1 from dynamic ray-tracing: Extraction � � A B Data example T = C D Conclusions propagator matrix in Cartesian coordinates Acknowledgments ◮ model update ∆ m : least-squares solution of F ∆ m = ∆ d ◮ calculation of Fréchet derivatives (matrix F ): ray perturbation theory

  9. CO 2 CRS: Tomography Regularization/additional constraints T. Klüver & J. Mann Introduction Velocity determination NIP waves & velocities CRS tomography Inversion procedure Regularization: First example Preconditioning. . . ◮ minimization of second derivatives of velocity Basics Smoothing (spatially dependent) Extraction Data example Additional constraints: Conclusions ◮ v ( x , y , z ) values at arbitrary locations ( x , y , z ) Acknowledgments ◮ force velocity structure to follow local reflector structure

  10. CO 2 CRS: Tomography Synthetic example: T. Klüver & J. Mann forward modeled attributes Introduction Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example Model description: Preconditioning. . . Basics ◮ 9 × 9 × 9 = 729 B-spline knots Smoothing Extraction ◮ horizontal spacing: 500 m Data example Conclusions ◮ vertical spacing: 400 m Acknowledgments ◮ 1008 NIP-locations used to model the input data ◮ initial ray direction follows local velocity gradient

  11. True model Inversion result CO 2 CRS: Tomography y [m] y [m] T. Klüver & J. Mann 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 0 4500 4500 4000 4000 1000 1000 Introduction velocity [m/s] velocity [m/s] 3500 3500 z [m] z [m] Velocity determination 2000 3000 2000 3000 NIP waves & velocities 2500 2500 3000 3000 CRS tomography 2000 2000 Inversion procedure 1500 1500 First example x=0m x=0m Preconditioning. . . y [m] y [m] 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 Basics 0 0 4500 4500 Smoothing 4000 4000 Extraction 1000 1000 velocity [m/s] velocity [m/s] 3500 3500 Data example z [m] z [m] 2000 3000 2000 3000 2500 2500 Conclusions 3000 3000 2000 2000 Acknowledgments 1500 1500 x=2000m x=2000m y [m] y [m] 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 0 4500 4500 4000 4000 1000 1000 velocity [m/s] velocity [m/s] 3500 3500 z [m] z [m] 2000 3000 2000 3000 2500 2500 3000 3000 2000 2000 1500 1500 x=4000m x=4000m

  12. Difference Inversion result CO 2 CRS: Tomography y [m] y [m] T. Klüver & J. Mann 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 0 300 4500 200 4000 1000 1000 Introduction velocity [m/s] velocity [m/s] 100 3500 z [m] z [m] Velocity determination 2000 0 2000 3000 NIP waves & velocities -100 2500 3000 3000 CRS tomography -200 2000 Inversion procedure -300 1500 First example x=0m x=0m Preconditioning. . . y [m] y [m] 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 Basics 0 0 300 4500 Smoothing 200 4000 Extraction 1000 1000 velocity [m/s] velocity [m/s] 100 3500 Data example z [m] z [m] 2000 0 2000 3000 -100 2500 Conclusions 3000 3000 -200 2000 Acknowledgments -300 1500 x=2000m x=2000m y [m] y [m] 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 0 300 4500 200 4000 1000 1000 velocity [m/s] velocity [m/s] 100 3500 z [m] z [m] 2000 0 2000 3000 -100 2500 3000 3000 -200 2000 -300 1500 x=4000m x=4000m

  13. CO 2 CRS: Tomography Motivation T. Klüver & J. Mann Introduction Velocity determination CRS attributes have characteristic features: NIP waves & velocities CRS tomography ◮ they should be constant along the wavelet Inversion procedure First example ◮ they should vary smoothly along the event Preconditioning. . . Basics However, in practice Smoothing Extraction ◮ unphysical fluctuations Data example Conclusions ◮ outliers Acknowledgments ◮ possibly not locally coherent Thus ◮ event-consistent smoothing ◮ identification of valid pick locations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend