time space adaptive numerical methods for multi scale
play

Time-space adaptive numerical methods for multi-scale reaction waves - PowerPoint PPT Presentation

Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Time-space adaptive numerical methods for multi-scale reaction waves simulation M. Duarte 1 M. Massot 1 S. Descombes 2 T. Dumont 3


  1. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Time-space adaptive numerical methods for multi-scale reaction waves simulation M. Duarte 1 M. Massot 1 S. Descombes 2 T. Dumont 3 V. Louvet 3 C. Tenaud 4 1 EM2C - Ecole Centrale Paris - France 2 Laboratoire J. A. Dieudonné - Nice - France 3 ICJ - Université Claude Bernard Lyon 1 - France 4 LIMSI - CNRS - France In collaboration with S. Candel 1 and F. Laurent 1 . SMAI 2011 - May 25th 2011 Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 1 / 29

  2. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Outline Context and Motivation 1 Time/Space Adaptive Numerical Scheme 2 Numerical Illustration 3 Conclusions and Perspectives 4 Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 2 / 29

  3. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Context and Motivation Predictive Simulations for industrial needs Strong evolution of Computer Power and Modeling Tools source: CERFACS. Main Numerical Goals: Resolution of the dynamics of reaction fronts. Reliable accuracy control based on mathematical aspects. New Numerical Strategies for Time/Space Multi-scale Fronts source: R. Vicquelin, EM2C Lab. Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 3 / 29

  4. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Context and Motivation Predictive Simulations for industrial needs Strong evolution of Computer Power and Modeling Tools source: CERFACS. Main Numerical Goals: Resolution of the dynamics of reaction fronts. Reliable accuracy control based on mathematical aspects. New Numerical Strategies for Time/Space Multi-scale Fronts source: R. Vicquelin, EM2C Lab. Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 3 / 29

  5. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Application Background Flames (dynamics, Plasma (repetitive pollutants, complex chemistry) discharges, streamers) source: Yale Univ. source: A. Bourdon EM2C Biochemical Engineering Chemical waves (migraines, Rolando’s (spiral waves, scroll waves) region, strokes) Time and Space Multi-scale Phenomena Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 4 / 29

  6. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Numerical Strategies Coupled resolution of large Alternative methods: decoupling time scale spectrum time scale spectrum Time explicit methods Partitioning methods (high order in space) G. Warnecke et al , ... Implicit methods Operator Splitting techniques (adaptive time stepping) J.B. Bell et al , M.S. Day et al , H.N. Najm, O.M. Knio, ... SANDIA, ISTA/JAXA, CERFACS, ... AMR techniques for flames, detonations, reactive flows R. Deiterding, T. Ogawa et al , D.W. Schwendeman et al , J.W. Banks et al , S. Paolucci et al , K. Schneider et al , ... Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 5 / 29

  7. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Numerical Strategies Coupled resolution of large Alternative methods: decoupling time scale spectrum time scale spectrum Time explicit methods Partitioning methods (high order in space) G. Warnecke et al , ... Implicit methods Operator Splitting techniques (adaptive time stepping) J.B. Bell et al , M.S. Day et al , H.N. Najm, O.M. Knio, ... SANDIA, ISTA/JAXA, CERFACS, ... AMR techniques for flames, detonations, reactive flows R. Deiterding, T. Ogawa et al , D.W. Schwendeman et al , J.W. Banks et al , S. Paolucci et al , K. Schneider et al , ... Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 5 / 29

  8. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Numerical Strategies Coupled resolution of large Alternative methods: decoupling time scale spectrum time scale spectrum Time explicit methods Partitioning methods (high order in space) G. Warnecke et al , ... Implicit methods Operator Splitting techniques (adaptive time stepping) J.B. Bell et al , M.S. Day et al , H.N. Najm, O.M. Knio, ... SANDIA, ISTA/JAXA, CERFACS, ... AMR techniques for flames, detonations, reactive flows R. Deiterding, T. Ogawa et al , D.W. Schwendeman et al , J.W. Banks et al , S. Paolucci et al , K. Schneider et al , ... Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 5 / 29

  9. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Time/Space Adaptive Numerical Strategy Time integration method Adaptive splitting time step ⇓ technique Strang Operator Splitting ֒ → dynamic accuracy control ֒ → based on Numerical based on NA Analysis for stiff PDEs Descombes et al 11 ֒ → splitting time steps larger ֒ → applied to instationary than fastest scales problems Descombes & Massot 04, Descombes et al 07-11 Duarte et al 11 Space adaptive multiresolution technique ֒ → based on wavelet transform and NA Harten 95, Cohen et al 01 ֒ → applied to stiff PDEs Duarte et al 10, Tenaud MR CHORUS Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 6 / 29

  10. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Time/Space Adaptive Numerical Strategy Time integration method Adaptive splitting time step ⇓ technique Strang Operator Splitting ֒ → dynamic accuracy control ֒ → based on Numerical based on NA Analysis for stiff PDEs Descombes et al 11 ֒ → splitting time steps larger ֒ → applied to instationary than fastest scales problems Descombes & Massot 04, Descombes et al 07-11 Duarte et al 11 Space adaptive multiresolution technique ֒ → based on wavelet transform and NA Harten 95, Cohen et al 01 ֒ → applied to stiff PDEs Duarte et al 10, Tenaud MR CHORUS Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 6 / 29

  11. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Strang Operator Splitting ∂ t u − ∂ x · F ( u ) − ∂ x · ( D ( u ) ∂ x u ) = Ω( u ) ∂ t u = Ω( u ) ∂ t u = ∂ x · ( D ( u ) ∂ x u ) ∂ t u = ∂ x · F ( u ) R ∆ t R → Radau5 (Hairer & Wanner 91) S ∆ t u 0 = R ∆ t / 2 D ∆ t / 2 C ∆ t D ∆ t / 2 R ∆ t / 2 u 0 D ∆ t D → ROCK4 (Abdulle 02) C ∆ t C → OSMP3 (Daru & Tenaud 04) Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 7 / 29

  12. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Strang Operator Splitting ∂ t u − ∂ x · F ( u ) − ∂ x · ( D ( u ) ∂ x u ) = Ω( u ) ∂ t u = Ω( u ) ∂ t u = ∂ x · ( D ( u ) ∂ x u ) ∂ t u = ∂ x · F ( u ) R ∆ t R → Radau5 (Hairer & Wanner 91) S ∆ t u 0 = R ∆ t / 2 D ∆ t / 2 C ∆ t D ∆ t / 2 R ∆ t / 2 u 0 D ∆ t D → ROCK4 (Abdulle 02) C ∆ t C → OSMP3 (Daru & Tenaud 04) Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 7 / 29

  13. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Time Adaptive Numerical Strategy Time integration method Adaptive splitting time step ⇓ technique Strang Operator Splitting ֒ → dynamic accuracy control ֒ → based on Numerical based on NA Analysis for stiff PDEs Descombes et al 11 ֒ → splitting time steps larger ֒ → applied to instationary than fastest scales problems Descombes & Massot 04, Descombes et al 07-11 Duarte et al 11 Space adaptive multiresolution technique ֒ → based on wavelet transform and NA Harten 95, Cohen et al 01 ֒ → applied to stiff PDEs Duarte et al 10, Tenaud MR CHORUS Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 8 / 29

  14. Context and Motivation Time/Space Adaptive Numerical Scheme Numerical Illustration Conclusions and Perspectives Adaptive Splitting Time Step We define two time integration solvers: S ∆ t u 0 − T ∆ t u 0 = O (∆ t 3 ) = ⇒ Strang formula S ∆ t u 0 − T ∆ t u 0 = O (∆ t 2 ) � = ⇒ embedded Strang formula and considering � � � S ∆ t u 0 − � S ∆ t u 0 � ≈ O (∆ t 2 ) < η yields � η ∆ t new = ∆ t � � � S ∆ t u 0 − � � S ∆ t u 0 Duarte, Massot, Descombes, Dumont, Louvet, Tenaud Time-Space Adaptive Numerical Methods 9 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend