time multi scale parameter identification of models
play

Time-multi-scale parameter identification of models describing - PowerPoint PPT Presentation

SMIP workshop Time-multi-scale parameter identification of models describing material fatigue Guillaume PUEL Denis AUBRY Laboratoire MSSMat Ecole Centrale Paris / CNRS UMR 8579 Context Rotor blade Combined Cycle


  1. SMIP workshop Time-multi-scale 
 parameter identification 
 of models describing 
 material fatigue Guillaume PUEL 
 Denis AUBRY 
 Laboratoire MSSMat Ecole Centrale Paris / CNRS UMR 8579

  2. Context • Rotor blade «Combined Cycle Fatigue» (CCF) Loading on the blades: � • aerodynamic forces 
 ↔ high frequency � • centrifugal force 
 ↔ low frequency Ratio LF/HF: ξ ∼ 10 − 4 EU Project 
 (2006-2011) PREdictive MEthods for Combined CYcle fatigue in gas turbines 
 G. Puel - SMIP workshop - 2 oct. 2014 - 2

  3. Context • Necessity of a specific method � • complex interaction between low- and high- frequency loads, and dynamic effects 
 ➡ classical cumulative laws can be inadequate � • time-dependent simulations required 
 ➡ need to efficiently describe the `slow’ evolution of a structure withstanding `fast’ loading cycles � • use of a specific method to reduce the associated huge computation cost G. Puel - SMIP workshop - 2 oct. 2014 - 3

  4. Context • Process: periodic time homogenization method 
 [Guennouni & Aubry 1986][Guennouni 1988] � • separation of two time scales � • asymptotic expansion 
 ➡ time-homogenized problem 
 solved on slow time steps only � • Similarities 
 with periodic space homogenization techniques 
 [Bensoussan et al. 1978, Sanchez-Palencia 1980, ...] G. Puel - SMIP workshop - 2 oct. 2014 - 4

  5. Outline • Periodic time homogenization � • basic ingredients � • simple case of study � • towards industrial problems � • Time-multi-scale parameter identification � • Prospects G. Puel - SMIP workshop - 2 oct. 2014 - 5

  6. Basic ingredients • Two independent time scales � τ = t • fast time scale � ξ = t ξ τ � 1 • slow time scale � t • Total differentiation rule: for � α ( t, τ ) d t α = ∂ t α + 1 ξ ∂ τ α � • time derivative w.r.t. slow time: � ∂ t α = ˙ α • time derivative w.r.t. fast time: ∂ τ α = α � G. Puel - SMIP workshop - 2 oct. 2014 - 6

  7. Basic ingredients • Quasi-periodicity assumption � � ⇥ t, τ + 1 α ( t, τ ) = α ∀ t � F • periodicity w.r.t. the fast period � ξ /F • Fast-time average � 1 � F < α > ( t ) = F α ( t, τ ) d τ � 0 α ( t, τ ) • quasi-periodicity: < α > ( t ) < α � > = 0 τ + 1 F τ G. Puel - SMIP workshop - 2 oct. 2014 - 7

  8. Basic ingredients • Time homogenization � • directly compute time-homogenized quantities � α ( t, τ ) � < α > ( t ) � � t t ξ = t • using asymptotic expansions w.r.t. τ � 1 ε p ( x , t, τ ) = ε p 0 ( x , t, τ ) + ξε p 1 ( x , t, τ ) + O ( ξ 2 ) ... G. Puel - SMIP workshop - 2 oct. 2014 - 8

  9. Outline • Periodic time homogenization � • basic ingredients � • simple case of study � • towards industrial problems � • Time-multi-scale parameter identification � • Prospects G. Puel - SMIP workshop - 2 oct. 2014 - 9

  10. Simple case: tensile test on a bar 1D • Description � x = 0 x = L fast • cylindrical bar � slow f s ( t, τ ) • two-frequency tensile load 
 0.129Hz / 1290Hz = 1 st mode 
 amplitudes ratio = 1/4 � • Material: titanium alloy � • viscoplastic flow rule with two hardenings � • Rayleigh damping (prop. to stiffness) G. Puel - SMIP workshop - 2 oct. 2014 - 10

  11. Simple case: tensile test on a bar • BCs: � • Reference model � σ | x = L = f s u | x =0 = 0 ∂ x σ + c K d t ∂ x σ = ρ d 2 • PDEs: � � t u ∀ t, τ σ = E ( ∂ x u − ε p ) • zero initial values � ⇥ n � | σ − X | − R − k d t p = � K ∀ x ∈ (0 , L ) + d t ε p = d t p sign( σ − X ) � ∀ t, τ d t ε p = a ( σ ) ⇔ d t X = 2 � 3 C d t ε p − γ 0 d t p X [Lemaître & 
 � d t R = b ( Q − R )d t p Chaboche 1990] G. Puel - SMIP workshop - 2 oct. 2014 - 11

  12. zeroth-order 
 time-homogenized pb. d t ε p = a ( σ ) • Evolution equation: � • asymptotic expansion: � 1 � + ( ˙ ξ ε p ε p 0 + ε p ε p 1 + ε p � ) + O ( ξ 2 ) � ) + ξ ( ˙ � 0 1 2 = a ( σ 0 ) + ξσ 1 D σ a ( σ 0 ) + O ( ξ 2 ) � 1 � = 0 ε p < ε p 0 > = ε p ξ ε p • order -1: 
 only 0 ( x, t ) ⇒ ⇒ 0 0 ➡ viscoplasticity is a slow-evolving phenomenon � = a ( σ 0 ) ε p 0 + ε p < ε p � > = 0 • order 0: ˙ avrg. ⇒ 1 1 ε p � ⇥ ⇒ ˙ 0 = a ( σ 0 ) G. Puel - SMIP workshop - 2 oct. 2014 - 12

  13. zeroth-order 
 time-homogenized pb. • Equilibrium equation: � ∂ x σ + c K d t ∂ x σ = ρ d 2 t u • asymptotic expansion: � t u = 1 0 + 1 d 2 ξ 2 u 00 u 0 0 + u 00 u 0 1 + u 00 ξ (2 ˙ 1 ) + (¨ u 0 + 2 ˙ 2 ) + O ( ξ ) � u 00 u 0 ( x, t ) only • order -2: � 0 = 0 ⇒ u 1 ( x, t ) only • order -1: u 00 ⇒ 1 = 0 ... ➡ the two time scales are not separable! G. Puel - SMIP workshop - 2 oct. 2014 - 13

  14. 
 
 zeroth-order 
 time-homogenized pb. • Equilibrium equation: � ∂ x σ + c K d t ∂ x σ = ρ d 2 t u ρ L 2 F 2 = βξ 2 • assumption: with � β ≤ O (1) E • equivalent physical criterion: 
 L L p p β or βξ = = λ F/ ξ λ F with , wavelengths of propagating waves 
 λ F λ F/ ξ F with frequency and respectively F ξ β E 0 + ξ β E ➡ ρ d 2 1 ) + O ( ξ 2 ) L 2 F 2 u �� u � 0 + u �� t u = L 2 F 2 (2 ˙ G. Puel - SMIP workshop - 2 oct. 2014 - 14

  15. zeroth-order 
 time-homogenized pb. α ( t, τ ) ε p � ⇥ < α > ( t ) ˙ 0 = a ( σ 0 ) τ + 1 F α = < α > + α ∗ τ σ 0 ( x, t, τ ) = < σ 0 > ( x, t ) + σ ∗ 0 ( x, t, τ ) Slow elasto-viscoplastic q.s. pb. Fast elastic damped dyn. pb. < α > α ∗ 0 + γ β E t 0 = ∂ x σ ⇤ F ∂ x σ ⇤ L 2 F 2 u ⇤ 00 ∂ x < σ 0 > = 0 0 0 < σ 0 > = E ( ∂ x < u 0 > − ε p σ ∗ 0 = E ∂ x u ∗ 0 ) 0 u ∗ 0 | x =0 = 0 < u 0 > | x =0 = 0 σ ∗ 0 | x = L = f ∗ < σ 0 > | x = L = < f s > s G. Puel - SMIP workshop - 2 oct. 2014 - 15

  16. Validation of the method • Plastic strain: � [Puel & Aubry EJCM 2012] • comparison for the first slow cycle of ε p 0 homogenized x=0 reference x=L fast slow x=0 x=L impact of 
 inertial terms G. Puel - SMIP workshop - 2 oct. 2014 - 16

  17. Validation of the method • Simulation for a 1-hour time interval � • 180 slow cycles / 1 800 000 fast cycles x=0 classical condition: � 36 000 000 time steps x=L x400 time-homogenized: � 0,05Hz / 500Hz 90 000 time steps 
 only G. Puel - SMIP workshop - 2 oct. 2014 - 17

  18. Outline • Periodic time homogenization � • basic ingredients � • simple case of study � • towards industrial problems � • Time-multi-scale parameter identification � • Prospects G. Puel - SMIP workshop - 2 oct. 2014 - 18

  19. Other material laws • Material fatigue simulation: CCF � • viscoplasticity + damage / dynamic case Lemaître-Chaboche Lemaître isotropic viscoplasticity model damage model x=0 x=0 x=L x=L fast slow G. Puel - SMIP workshop - 2 oct. 2014 - 19

  20. Back to context • PREMECCY tests G. Puel - SMIP workshop - 2 oct. 2014 - 20

  21. Back to context • Blade-shaped specimen: � [Puel & Aubry IJMCE 2014] • CCF testing: 0.14Hz / 1400Hz fast mode @ 1400Hz 
 slow (bending II) longitudinal plastic strain 100 slow cycles � 1 000 000 fast cycles G. Puel - SMIP workshop - 2 oct. 2014 - 21

  22. Outline • Periodic time homogenization � • Time-multi-scale parameter identification � • generic framework � • application to a simple case � • Prospects G. Puel - SMIP workshop - 2 oct. 2014 - 22

  23. 
 Generic nonlinear model • Time-dependent forward state equation: 
 F ( u ( t ) , v ( t ) , a ( t ) , p , t ) = 0 a ( t ) = d 2 u v ( t ) = d u d t ( t ) d t 2 ( t ) • = an ODE with initial conditions � � u (0) = U 0 v (0) = V 0 • Model with scalar parameters : � p ➡ forward state � u ( t ; p ) • of size N = number of DOFs (FE discretization) u G. Puel - SMIP workshop - 2 oct. 2014 - 23

  24. Experimental data • Measurements: � • associated with some given points only � • assumption: 
 Au exp ( t ) with linear operator � A • Matching DOFs: � Au ( t ; p ) • Misfit function: � • discrepancy between model and experiments G. Puel - SMIP workshop - 2 oct. 2014 - 24

  25. Inverse problem • Misfit function: � � T � J ( p ) = 1 | A ( u ( t ; p ) − u exp ( t )) | 2 d t + α 2 | p − p 0 | 2 � 2 0 ➡ Tikhonov 
 • Constrained minimization: � regularization • equivalent to the stationarity of the Lagrangian: � T L ( u , p , z ) = 1 | A ( u ( t ) − u exp ( t )) | 2 d t + α 2 | p − p 0 | 2 2 0 ➡ independent 
 � T F ( u ( t ) , v ( t ) , a ( t ) , p , t ) T z ( t ) d t variables − 0 − ( u (0) − U 0 ) T z (0) − ( v (0) − V 0 ) T d z d t (0) G. Puel - SMIP workshop - 2 oct. 2014 - 25

  26. Adjoint state • Stationarity of with respect to : � L u ⇤ T δ u ( t ) T � ⇥ A T A ( u ( t ) � u exp ( t )) d t � 0 ⇤ T ⇥ T � � ⇥ u F δ u ( t ) + ⇥ v F δ v ( t ) + ⇥ a F δ a ( t ) z ( t ) d t � 0 � � δ u (0) T z (0) � δ v (0) T d z � d t (0) = 0 • = adjoint state � z • , and directional derivatives 
 � u F � v F � a F ( ↔ differentiated forward equation) G. Puel - SMIP workshop - 2 oct. 2014 - 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend