tighter lp relaxations for configuration knapsacks using
play

Tighter LP relaxations for configuration knapsacks using extended - PowerPoint PPT Presentation

Timo Berthold Ralf Borndrfer Gregor Hendel Heide Hoppmann Marika Karb- stein International Symposium on Mathematical Programming, July 6th, 2018, Bordeaux, France Hendel et al. Tighter LP relaxations for configuration knapsacks using


  1. Timo Berthold Ralf Borndörfer Gregor Hendel Heide Hoppmann Marika Karb- stein International Symposium on Mathematical Programming, July 6th, 2018, Bordeaux, France Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations 1/28 Tighter LP relaxations for configuration knapsacks using extended formulations

  2. Configuration Knapsacks

  3. 2/28 is the Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations c t x s.t. with j n g A frequent structure in many Mixed-Integer Programs (MIPs) Knapsack constraints min Ax ≤ b x ∈ { 0 , 1 } n b × Z ≥ 0 × R n c Knapsack constraint ∑ w j x j ≤ β knap( w , β ) • w j ∈ Z ≥ 0 • w j = 0 for all j > n b • β ∈ Z +

  4. Line Planning Model [Borndörfer et al., 2013] 0 1 L x l f d e e E f F 3/28 1 F l L x F Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations f x l f l f L e l s.t. c l f x l f F f L l • • frequencies • set L of possible paths in G Example – Line Planning • Input: Graph G = ( V , E ) . • Edge demands d e ≥ 0 F = { f 1 , . . . , f d } ⊂ Z + • Operational costs c l , f > 0.

  5. 3/28 • Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations • set L of possible paths in G • frequencies s.t. Example – Line Planning • Input: Graph G = ( V , E ) . • Edge demands d e ≥ 0 F = { f 1 , . . . , f d } ⊂ Z + • Operational costs c l , f > 0. Line Planning Model [Borndörfer et al., 2013] ∑ ∑ min c l , f x l , f l ∈ L f ∈ F ∑ ∑ f · x l , f ≥ d e ∀ e ∈ E l ∈ L : e ∈ l f ∈ F ∑ x l , f ≤ 1 ∀ l ∈ L f ∈ F x ∈ { 0 , 1 } L × F

  6. 4/28 The demand inequalities can be formulated as knapsack constraint Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations Transformation into Knapsack knap( w , β ) . Let e ∈ E , use ¯ x l , f = 1 − x l , f ∈ { 0 , 1 } ∑ ∑ f · x l , f ≥ d e l ∈ L : e ∈ l f ∈ F ∑ ∑ f · ( 1 − ¯ ⇔ x l , f ) ≥ d e l ∈ L : e ∈ l f ∈ F ∑ ∑ ∑ ∑ ⇔ f · ¯ x l , f ≤ ( f ) − d e l ∈ L : e ∈ l f ∈ F l ∈ L : e ∈ l f ∈ F � �� � =: β

  7. 5/28 n weights. Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations k Central observation: Demand constraints only have ”a handful” ( d ) difgerent Configuration knapsacks Configuration knapsack Let d ∈ N . Let w ∈ Z n ≥ 0 , β ∈ Z ≥ 0 define a knapsack constraint knap( w , β ) . If there exists a partition of [ n ] into k ≤ d groups N 1 , . . . , N k [ n ] = N 1 ˙ ∪ N 2 ˙ ∪ . . . ˙ ∪ N k such that i , j ∈ N l ⇔ w i = w j (=: ω l ) , then knap( w , β ) can be written ∑ ∑ ∑ w i x i = ω l x i ≤ β i = 1 l = 1 i ∈ N l and is called a configuration knapsack.

  8. 6/28 Then, Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations P . is a valid inequality for 1 C x i C i w i C i n be minimal such that Let C Cover Inequalities [Wolsey, 1975] and Cover inequalities for knapsacks Let knap( w , β ) be a knapsack constraint. Define P := { x ∈ { 0 , 1 } n : w T x ≤ β } P LP := { x ∈ [ 0 , 1 ] n : w T x ≤ β } ⊇ conv( P )

  9. 6/28 i Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations P . is a valid inequality for 1 C x i C Then, Cover Inequalities [Wolsey, 1975] and Cover inequalities for knapsacks Let knap( w , β ) be a knapsack constraint. Define P := { x ∈ { 0 , 1 } n : w T x ≤ β } P LP := { x ∈ [ 0 , 1 ] n : w T x ≤ β } ⊇ conv( P ) Let C ⊂ [ n ] be minimal such that ∑ w i > β. i ∈ C

  10. 6/28 Cover Inequalities [Wolsey, 1975] Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations and Then, Cover inequalities for knapsacks Let knap( w , β ) be a knapsack constraint. Define P := { x ∈ { 0 , 1 } n : w T x ≤ β } P LP := { x ∈ [ 0 , 1 ] n : w T x ≤ β } ⊇ conv( P ) Let C ⊂ [ n ] be minimal such that ∑ w i > β. i ∈ C ∑ x i ≤ | C | − 1 i ∈ C is a valid inequality for conv( P ) .

  11. • more knapsack cutting planes: • Liħted cover inequalities [Balas, Gu] • G(eneralized) U(pper) B(ound) Inequalities [Wolsey, 1990] • strengthening of cover inequalities [Carr et al, 2000] • Existence of small extended formulations for knapsack polytopes [Bienstock 2008, Bazzi et al, 2016] • a lot of very recent work presented at this conference. Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations 7/28 More related work

  12. An Extended Formulation for configuration knapsacks

  13. • Construct higher dimensional polytope Q into the space of x -variables is tighter, [Borndörfer, Hoppmann, Karbstein, 2013] construct an extended formulation for the line planning problem. Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations 8/28 A primer on extended formulations such that the projection π ideally conv { P }

  14. Reformulation of Introduce new binary variables z y for y 9/28 i N l x i y y l z y l 1 k y z y 1 z y 0 1 y ( w x z ) Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations . 1 k x i l N l 0 y l l y l y denote all maximal points of Let w k Extended formulation for configuration knapsacks Let knap( w , β ) be a configuration knapsack of cardinality k ≤ d . ∑ ∑ ω l ≤ β l = 1 i ∈ N l � �� � =: y l

  15. 9/28 z y y y l z y l 1 k y 1 N l z y 0 1 y ( w x z ) Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations x i i k x i Extended formulation for configuration knapsacks Let knap( w , β ) be a configuration knapsack of cardinality k ≤ d . ∑ ∑ ω l ≤ β l = 1 i ∈ N l � �� � =: y l Reformulation of knap( w , β ) Let Y denote all maximal points of ∑ { y : ω l y l ≤ β, y l ∈ { 0 , . . . , | N l |} , l = 1 , . . . , k } . Introduce new binary variables z y for y ∈ Y .

  16. 9/28 x i k Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations y l z y Extended formulation for configuration knapsacks Let knap( w , β ) be a configuration knapsack of cardinality k ≤ d . ∑ ∑ ω l ≤ β l = 1 i ∈ N l � �� � =: y l Reformulation of knap( w , β ) Let Y denote all maximal points of ∑ { y : ω l y l ≤ β, y l ∈ { 0 , . . . , | N l |} , l = 1 , . . . , k } . Introduce new binary variables z y for y ∈ Y . ∑ ∑ x i ≤ ∀ l = 1 , . . . , k y ∈Y i ∈ N l ∑ ( reform( w , β, x , z ) ) z y = 1 y ∈Y z y ∈ { 0 , 1 } y ∈ Y

  17. y z y 10/28 x 1 1 0 2 0 1 0 2 0 • Reformulation: z y 0 1 for all y , 1 x 2 • maximal points (maximal configurations) x 3 x 4 x 5 x 6 x 7 x 9 x 9 3 z y 1 2 z y 2 z y 1 2 z y 3 z y 2 Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations 3 3 y l , 0 l y l 1 l 3 • weight space inequality 7 3 5 2 2 1 • three weights Example 2 x 1 + 2 x 2 + 2 x 3 + 5 x 4 + 5 x 5 + 5 x 6 + 7 x 7 + 7 x 8 + 7 x 9 ≤ 11 � �� � � �� � � �� � N 1 = { 1 , 2 , 3 } N 2 = { 4 , 5 , 6 } N 3 = { 7 , 8 , 9 }

  18. y z y 10/28 x 4 2 0 • Reformulation: z y 0 1 for all y , 1 x 1 x 2 x 3 x 5 1 x 6 x 7 x 9 x 9 3 z y 1 2 z y 2 z y 1 2 z y 3 z y 2 Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations 0 0 2 0 1 3 • maximal points (maximal configurations) Example 2 x 1 + 2 x 2 + 2 x 3 + 5 x 4 + 5 x 5 + 5 x 6 + 7 x 7 + 7 x 8 + 7 x 9 ≤ 11 � �� � � �� � � �� � N 1 = { 1 , 2 , 3 } N 2 = { 4 , 5 , 6 } N 3 = { 7 , 8 , 9 } • three weights ω 1 = 2 , ω 2 = 5 , ω 3 = 7 • weight space inequality ∑ 3 l = 1 ω l y l ≤ β , 0 ≤ y l ≤ 3

  19. y z y 10/28 x 2 0 0 1 0 2 0 • Reformulation: z y 0 1 for all y , 1 x 1 x 3 3 x 4 x 5 x 6 x 7 x 9 x 9 3 z y 1 2 z y 2 z y 1 2 z y 3 z y 2 Hendel et al. – Tighter LP relaxations for configuration knapsacks using extended formulations 1 2 • maximal points (maximal configurations) Example 2 x 1 + 2 x 2 + 2 x 3 + 5 x 4 + 5 x 5 + 5 x 6 + 7 x 7 + 7 x 8 + 7 x 9 ≤ 11 � �� � � �� � � �� � N 1 = { 1 , 2 , 3 } N 2 = { 4 , 5 , 6 } N 3 = { 7 , 8 , 9 } • three weights ω 1 = 2 , ω 2 = 5 , ω 3 = 7 • weight space inequality ∑ 3 l = 1 ω l y l ≤ β , 0 ≤ y l ≤ 3                   Y =  ,  ,        

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend