three point correlators from string theory amplitudes
play

Three-point correlators from string theory amplitudes Joseph - PowerPoint PPT Presentation

Three-point correlators from string theory amplitudes Joseph Minahan Uppsala University arXiv:1206.3129 Till Bargheer, Raul Pereira, JAM: arXiv:1311.7461; Raul Pereira, JAM: arXiv:1407.xxxx Strings 2014 in Princeton; 27 June Introduction


  1. Three-point correlators from string theory amplitudes Joseph Minahan Uppsala University arXiv:1206.3129 Till Bargheer, Raul Pereira, JAM: arXiv:1311.7461; Raul Pereira, JAM: arXiv:1407.xxxx Strings 2014 in Princeton; 27 June

  2. Introduction Spectrum of local operators in N = 4 SYM effectively solved in the planar limit. Determined by: ◮ Integrability: Asymptotic Bethe ansatz Staudacher (2004), Beisert-Staudacher(2005), Beisert (2005), Janik (2006), Eden-Staudacher (2006), Beisert-Hernandez-Lopez (2006), Beisert-Eden-Staudacher (2006) . . . ◮ Finite size complications (winding effects). Handled by TBA, Y-system, Hirota, FiNLIE, Q-functions Ambjorn-Janik-Kristjansen (2005), Bajnok-Janik (2008), Gromov-Kazakov-Vieira (2009,2009), G-K-Kozac-V (2009), Arutyunov-Frolov (2008,2009), Bombardelli-Fioravanti-Tateo (2009), Frolov (2010), Gromov-Kazakov-Leurent-Volin (2011, 2013, 2014) . . .

  3. Introduction (cont) A key example: Konishi operator: O K = tr ( φ I φ I ); Primary: [ K µ , O K (0)] = 0; SO (6) singlet Z λ = g 2 �O K ( x ) O K ( y ) � = YM N | x − y | 2∆ K ( λ )

  4. Introduction (cont) Besides the spectrum, to really solve the theory we need the three-point correlators. Correlator for three local operators: C 123 �O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) � = | x 12 | 2 α 3 | x 23 | 2 α 1 | x 31 | 2 α 2 α 1 = 1 α 2 = 1 α 3 = 1 2 (∆ 2 + ∆ 3 − ∆ 1 ) 2 (∆ 3 + ∆ 1 − ∆ 2 ) 2 (∆ 1 + ∆ 2 − ∆ 3 ) C 123 ∼ N − 1 for N ≫ 1.

  5. Introduction (cont) C 123 is protected for 3 chiral primaries. ◮ Chiral primary O C ( x ): [ Q , O C (0)] = 0 for half the Q ’s ◮ The gravity duals are K-K modes in the AdS 5 × S 5 type IIB supergravity ◮ Supergravity calculation shows that C 123 at large λ is the same as the zero-coupling result Lee, Minwalla, Rangamani and Seiberg (1998)

  6. Introduction (cont) Nonchiral primaries are not dual to sugra states but to massive string states. ◮ “Heavy” operators: Dual to long classical strings that stretch across the AdS 5 × S 5 . ◮ Semiclassical string calculation for 3-point correlators . Janik-Surowka-Wereszczynski (2010) ◮ Two heavy, one light Zarembo (2010), Costa-Monteiro-Santos-Zoakos (2010), Roiban-Tseytlin (2010) . . . ◮ Three heavy Janik-Wereszczynski (2011), Buchbinder-Tseytlin (2011), Klose-McLoughlin (2011), Kazama-Komatsu (2011-13), . . . ◮ The Konishi operator is neither semi-classical nor light – blank it is dual to a short string state. ◮ Can one compute the 3-point correlators involving at least blankone Konishi operator for λ ≫ 1?

  7. Introduction (cont) ◮ General idea: Since Konishi is short it doesn’t see the curvature of blank AdS 5 × S 5 ( R = 1) = ⇒ use the flat-space limit. ◮ Flat-space for the spectrum: √ α ′ = λ − 1 / 4 ≪ 1 Gubser-Klebanov-Polyakov (1998) String size ∼ m 2 = 4 n /α ′ = 4 n λ 1 / 2 Flat-space closed strings: m 2 = ∆ 2 − d ∆ ≈ ∆ 2 AdS/CFT dictionary: ∆ ≈ 2 √ n λ 1 / 4 n = 1 for Konishi

  8. Introduction (cont) Back to the Gromov-Kazakov-Vieira plot: տ 2 λ 1 / 4 + 2 λ 1 / 4 + . . . . ↑ ↑ .. GKP 1-loop w-s .

  9. Introduction (cont) Back to the Gromov-Kazakov-Vieira plot: տ 2 λ 1 / 4 + 2 λ 1 / 4 + . . . . ↑ ↑ .. GKP 1-loop w-s . We would like a similar goal for 3-point correlators

  10. 3-point correlators – Witten diagrams 3-point correlators in supergravity Witten (1998) Freedman-Mathur-Matusis-Rastelli . (1998) : ◮ Boundary to bulk propagators meet at an intersection point. ◮ Integrate over the intersection point. ◮ Multiply by sugra coupling G 123

  11. 3-point correlators – Witten diagrams 3-point correlators in supergravity Witten (1998) Freedman-Mathur-Matusis-Rastelli . (1998) : ◮ Boundary to bulk propagators meet at an intersection point. ◮ Integrate over the տ intersection point. Integral dominated by ◮ Multiply by sugra small region if ∆ i ≫ 1 coupling G 123

  12. 3-point correlators – Witten diagrams ◮ For Konishi operators treat as point-like . outside the intersection region using AdS propagators. ◮ Treat as strings in the . intersection region. տ Integral dominated by small region if ∆ i ≫ 1

  13. 3-point correlators – Witten diagrams ◮ For Konishi operators treat as point-like . outside the intersection region using AdS propagators. ◮ Treat as strings in the . intersection region. տ ◮ Small interaction region: use flat-space string Integral dominated by vertex operators to find small region if ∆ i ≫ 1 the couplings.

  14. 3-point correlators – Witten diagrams ◮ For Konishi operators treat as point-like . outside the intersection region using AdS propagators. ◮ Treat as strings in the . intersection region. տ ◮ Small interaction region: use flat-space string Integral dominated by vertex operators to find small region if ∆ i ≫ 1 the couplings. ◮ Which vertex operators?

  15. 3-point correlators-particle path integrals in AdS Three incoming particles meet at a joining point: x µ ( s 0 )= x µ , z ( s 0 )= z . Z 123 ≡ . circular geodesics � � 3 � z ǫ S cl( x µ , z ) = − ∆ i log z 2 + ( x − x i ) 2 i =1 Saddle point: Conservation of momentum: (See also Klose & McLoughlin (2011)) 3 � � Π i · Π i = − ∆ 2 Π µ, i = 0 Π z , i = 0 i i =1 z , i 2 − d (∆ 1 ∆ 2 ∆ 3 ) d / 4 α α 1 1 α α 2 2 α α 3 3 Σ Σ Z 123 ≈ π 1 4 | x 12 | 2 α 3 | x 23 | 2 α 1 | x 31 | 2 α 2 G 123 ( α 1 α 2 α 3 Σ d +1 ) 1 / 2 ∆ ∆ 1 1 ∆ ∆ 2 2 ∆ ∆ 3 4 3 Σ= 1 . 2 (∆ 1 +∆ 2 +∆ 3 )

  16. 3-point correlators-particle path integrals in AdS Three incoming particles meet at a joining point: ( x µ ( s 0 )= x µ , z ( s 0 )= z . Z 123 ≡ . . . 2 − d (∆ 1 ∆ 2 ∆ 3 ) d / 4 α α 1 1 α α 2 2 α α 3 3 Σ Σ π 4 C 123 G 123 = 4 ( α 1 α 2 α 3 Σ d +1 ) 1 / 2 ∆ ∆ 1 1 ∆ ∆ 2 2 ∆ ∆ 3 3 2 3 / 2 Γ( α 1 )Γ( α 2 )Γ( α 3 )Γ(Σ − d / 2) ≈ 2 )] 1 / 2 G 123 π d / 4 [Γ(∆ 1 )Γ(∆ 2 )Γ(∆ 3 )Γ(∆ 1 + 2 2 )Γ(∆ 2 + 2 d 2 )Γ(∆ 3 + 2 d d − − − . Freedman-Mathur-Matusis-Rastelli (1998) G 123 = V 123 � ψ J 1 ψ J 2 ψ J 3 � C 123 = V 123 × ( AdS 5 × S 5 Overlaps)

  17. String vertex operators: Strategy ◮ Let ∆ i ≫ 1. ◮ States are wave-packets with wavelength ∼ ∆ − 1 , spread ∼ ∆ − 1 / 2 ◮ ⇒ Treat as plane-waves in the intersection region Polchinski (1999) ◮ Momentum: k Mi = (Π µ i , Π zi ; � J i ), M = 0 . . . 9 ◮ Flat-space factors of (2 π ) 10 δ 10 ( k 1 + k 2 + k 3 ) replaced with AdS 5 × S 5 overlaps. ◮ Use level 1 (0) flat-space vertex operators for Konishi (chiral primaries). √ ◮ k 2 = − ∆ 2 + J 2 = − 4 n /α ′ = − 4 n λ ◮ � J can be set to 0 for level 1, but not for level 0. ◮ The coupling factor uses the string result 8 π V 123 = c α ′ � V ( k 1 ) V ( k 2 ) V ( k 3 ) � g 2 . Polchinski, String Theory, Vol 1, 2. g c = π 3 / 2 N − 1 in AdS/CFT dictionary .

  18. Which vertex operators? N = 4 superconformal algebra in manifest SO (2 , 4) form: 1 1 M µν , M − 1 µ ≡ 2 ( P µ − K µ ) M 4 µ ≡ 2 ( P µ + K µ ) M − 14 ≡ − D , √ √ aa ≡ ( ǫ αβ S a β ˜ α ˙ Q 1 aa ≡ ( Q α a , ˜ Q 2˙ β , ǫ ˙ Q a α a ) , β ) α, ˙ α = 1 , 2; ˙ a = 1 . . . 4 S ˙ ˙ ˙ b , b − i a a , Q 2 ˙ ˙ ˙ { Q 1 b b } = 1 b M mn γ mn b R IJ γ IJ 2 δ a 2 δ ˙ m , n = − 1 , . . . 4 a ˙ a ˙ a

  19. Which vertex operators? N = 4 superconformal algebra in manifest SO (2 , 4) form: 1 1 M µν , M − 1 µ ≡ 2 ( P µ − K µ ) M 4 µ ≡ 2 ( P µ + K µ ) M − 14 ≡ − D , √ √ aa ≡ ( ǫ αβ S a β ˜ α ˙ Q 1 aa ≡ ( Q α a , ˜ Q 2˙ β , ǫ ˙ Q a α a ) , β ) α, ˙ α = 1 , 2; ˙ a = 1 . . . 4 S ˙ ˙ ˙ b , b − i a a , Q 2 ˙ ˙ ˙ { Q 1 b b } = 1 b M mn γ mn b R IJ γ IJ 2 δ a 2 δ ˙ m , n = − 1 , . . . 4 a ˙ a ˙ a Define: ba Q 2˙ bb , Q R ba Q 2˙ Q L A ≡ Q 1 γ − 1 a γ 6 A ≡ i ( Q 1 γ − 1 a γ 6 bb ) , P m ≡ M − 1 , m , P J ≡ R J 6 aa + aa − ˙ ˙ ˙ ˙ b ˙ b ˙ { Q L , R , Q L , R } = 2Γ M { Q L A , Q R ⇒ AB P M + . . . B } = 0 A B 10d N = 2 Super-Poincar´ e algebra A , B = 1 . . . 16 , M = 0 . . . 9

  20. Which vertex operators? N = 4 superconformal algebra in manifest SO (2 , 4) form: 1 1 M µν , M − 1 µ ≡ 2 ( P µ − K µ ) M 4 µ ≡ 2 ( P µ + K µ ) M − 14 ≡ − D , √ √ aa ≡ ( ǫ αβ S a β ˜ α ˙ Q 1 aa ≡ ( Q α a , ˜ Q 2˙ β , ǫ ˙ Q a α a ) , β ) α, ˙ α = 1 , 2; ˙ a = 1 . . . 4 S ˙ ˙ ˙ b , b − i a a , Q 2 ˙ ˙ ˙ { Q 1 b b } = 1 b M mn γ mn b R IJ γ IJ 2 δ a 2 δ ˙ m , n = − 1 , . . . 4 a ˙ a ˙ a Define: ba Q 2˙ bb , Q R ba Q 2˙ Q L A ≡ Q 1 γ − 1 a γ 6 A ≡ i ( Q 1 γ − 1 a γ 6 bb ) , P m ≡ M − 1 , m , P J ≡ R J 6 aa + aa − ˙ ˙ ˙ ˙ b ˙ b ˙ { Q L , R , Q L , R } = 2Γ M { Q L A , Q R ⇒ AB P M + . . . B } = 0 A B 10d N = 2 Super-Poincar´ e algebra A , B = 1 . . . 16 , M = 0 . . . 9 α O (0) = � K µ O (0) = 0 S b Primary Operator: ⇒ S ˙ α b O (0) = 0 Q L = ± i Q R (sign depends on component) Flat-space:

  21. String vertex operators ⇒ Mixing of NS-NS and R-R modes: Q L ( | NS � ⊗ | NS � + | R � ⊗ | R � ) = | R � ⊗ | NS � + | NS � ⊗ R � ց ւ . . Q R ( | NS � ⊗ | NS � + | R � ⊗ | R � ) = | NS � ⊗ | R � + | R � ⊗ NS � Setting Q L = ± i Q R requires a mixture of both sets of fields

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend