thoughts on realistic inflation models 2016
play

Thoughts on realistic inflation models 2016 - PowerPoint PPT Presentation

Thoughts on realistic inflation models 2016 Korean Institute of Advanced Study 2016, , 2016/9/6 DISCLAIMER


  1. 現実的なインフレーション模型は何か Thoughts on realistic inflation models 2016 寺田 隆広 Korean Institute of Advanced Study 素粒子物理学の進展 2016, 基礎物理学研究所 , 2016/9/6

  2. DISCLAIMER • 主にインフレーションのレビューです。 • 限られた経験 / 知識に基づき、偏見に満ちています。 • 個々の模型では、議論に色々な抜け道があります。 • 皆様の模型が出なくても怒らないでください。 
 (コメントは歓迎。) • 寄り道して関連した自分の仕事を紹介します。

  3. 3 Outline 1. Introduction : inflation in a nutshell 2. Universality classes of inflation 
 Realization by “pole inflation” 3. Initial conditions : Small-field or Large-field? 4. Shift symmetry and its origin 
 U(1): pNGB or Wilson line 
 Weak Gravity Conjecture 
 R : scale invariant models 5. Summary & Conclusion

  4. Introduction: inflation in a nutshell

  5. 5 宇宙の加速膨張 動機・利点 一様等方宇宙 • 指数関数的膨張によって、一様性問題、平坦性問題、モノポール問題を解決する。 • インフラトンの量子揺らぎにより、宇宙の大規模構造の「種」をつくる。 Einstein eq. Friedmann eq. ✓ ˙ R µ ν − 1 ◆ 2 a = 8 π G ρ FLRW universe 2 g µ ν R = 8 π GT µ ν a 3 a = − 4 π G ¨ T µ ν = diag( − ρ , P, P, P ) a d s 2 = − d t 2 + a ( t ) 2 (d x 2 + d y 2 + d z 2 ) ( ρ + 3 P ) 3 Slow-roll P ' � ρ ' const. ρ = 1 φ 2 + V ˙ slow-roll 近似 2 a ( t ) ' e Ht ◆ 2 P = 1 ✓ V 0 ✏ = 1 ˙ φ 2 − V ⌧ 1 2 2 V Z φ Z t end � � V 00 d � � � | η | = � ⌧ 1 φ + V 0 = 0 φ + 3 H ˙ ¨ � � N = H d t = V � √ 2 ✏ φ end t

  6. 観測者 加速する観測者 解析接続された世界 ホワイトホール ブラックホール 6 観測者 [Hawking, Commun.Math.Phys. 43 (1975) 199, [Unruh, PRD14 (1976) 870] [Gibbons, Hawking, PRD15 (1977) 2738] Erratum: ibid. 46 (1976) 206] Minkowski 時空 Black Hole de Sitter 宇宙 r = 0 t = ∞ r = ∞ r = 0 Cosmological horizon Event horizon Rindler horizon T = a T = H T = κ Hawking radiation Gibbons-Hawking radiation Unruh radiation 2 π 2 π 2 π δφ = H inflaton fluctuation 2 π ζ = δ N = H δ t = H curvature perturbation δφ ˙ φ ✓ k ◆ n s − 1 Power spectra n s − 1 = − 6 ✏ + 2 ⌘ P s ( k ) = A s k ∗ ✓ k r ≡ A t ◆ n t = 16 ✏ P t ( k ) = A t k ∗ A s

  7. 7 Excellent fit by Λ CDM Scale invariant ( n s ∼ 1) (Planck TT+ low P) n s = 0 . 9655 ± 0 . 0062 Adiabatic ( β iso ∼ 0) β iso (0 . 002 Mpc − 1 ) < 4 . 1 × 10 − 2 (for CDM) Gaussian ( f NL ∼ 0) f local (Planck TT+ low P) = 0 . 8 ± 5 . 0 NL r n s [Planck collaboration, 1502.02114, 1502.01592]

  8. Universality classes of inflation

  9. 9 Analogy to Renormalization Group The Hamilton-Jacobi formalism φ ( t ) ↔ t ( φ ) “superpotential” W ( φ ) ≡ − H W φ = ˙ → This implies: V = 3 W 2 − 2 W 2 φ / 2 φ d g d φ d ln µ = β ( g ) d ln a = β ( φ ) cf .) s ˙ 3( P + ⇢ ) � ( � ) = − 2 W φ � √ where W = H = ± = ± 2 ✏ ⇢ → classified by the behavior near the fixed point (de Sitter).

  10. 10 Underlying connections? [McFadden, Skenderis, 0907.5542, 1001.2007] See also, dS/CFT and FRW/CFT. [Strominger, hep-th/0106113] [Freivogel et al., hep-th/0606204] [Witten hep-th/0106109] [Sekino et al., 0908.3844] [Larsen et al., hep-th/0202127] [Halyo, hep-th/0203235]

  11. 11 Universality classes of inflation [Mukhanov, 1303.3925] [Roest, 1309.1285] [Garcia-Bellido et al., 1402.2059] [Binetruy et al., 1407.0820]

  12. 12 Universality classes of inflation Figures from [Garcia-Bellido, Roest, 1402.2059]

  13. 13 観測的ステータス ◎ ◯ △ × △ △ Universality classes of inflation [Mukhanov, 1303.3925] [Roest, 1309.1285] [Garcia-Bellido et al., 1402.2059] [Binetruy et al., 1407.0820] Any underlying mechanism for the universality?

  14. 14 Inflationary Attractor Models Model space observables r predictions n s a limit of a parameter “attraction” r n s

  15. 15 Unity of cosmological attractors ( √− g ) − 1 L = − 1 2 Ω ( φ ) R − 1 2 K J ( φ )( ∂ µ φ ) 2 − V J ( φ ) [Galante, Kallosh, Linde, Roest, 1412.3797]

  16. 16 Unity of cosmological attractors ( √− g ) − 1 L = − 1 2 R − 1 2 K E ( ϕ )( ∂ µ ϕ ) 2 − V E ( ϕ ) [Galante, Kallosh, Linde, Roest, 1412.3797] 3 α / 2 K E ( φ ) ' ( φ � φ 0 ) 2 2nd order pole(s) in ! K E Inflation occurs near the pole. Canonical normalization makes the potential flat.

  17. 17 Pole inflation � − 1 L = − a p � √− g 1 − ϕ + O ( ϕ 2 ) � � 2 ϕ p ∂ µ ϕ∂ µ ϕ − V 0 2 ✓ ◆ p − 2 + · · · 8 ⇣ ⌘ − p − 2 1 � ( p 6 = 2) , V 0 2 √ a p φ < V = 1 � e − φ / √ a p + · · · � � ( p = 2) , V 0 : p p ✓ ◆ r = 8 a p p − 1 n s = 1 − ( p − 1) N ( p − 1) N a p [Galante, Kallosh, Linde, Roest, 1412.3797] [Broy, Galante, Roest, Westphal, 1507.02277]

  18. 18 Change of potential shape The original potential 3.5 3.0 2.5 2.0 1.5 1.0 0.5 - 1.0 - 0.5 0.5 1.0 0 < p < 2 p ≥ 2 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 - 0.8 - 0.6 - 0.4 - 0.2 2 3 4 5 6 “hilltop” “inverse-hilltop”

  19. 19 Inflation with a singular potential The original diverging potential 40 30 20 10 - 1.0 - 0.5 0.0 0.5 1.0 p = 2 p > 2 140 50 120 40 100 80 30 60 20 40 10 20 2 3 4 5 6 0.5 1.0 1.5 “power-law” “chaotic”

  20. 20 Inflation with a singular potential [Rinaldi, L. Vanzo, S. Zerbini, and G. Venturi, 1505.03386] [TT, 1602.07867] � − 1 L = − a p 2 ϕ p ∂ µ ϕ∂ µ ϕ − C � √− g ϕ s (1 + O ( ϕ )) 8 2 s p − 2 + · · · ⇣ ⌘ p − 2 ( p 6 = 2) , C 2 √ a p φ < V = Ce s φ / √ a p + · · · ( p = 2) . : Potentials for monomial chaotic and power-law inflation 8 s n s =1 − p + s − 2 r = ( p − 2) N ( p − 2) N

  21. 21 Summary of general pole inflation For more details, see [TT, arXiv:1602.07867]. p=1 1<p<2 p=2 2<p non-singular potential alpha-attractor 2nd order hilltop xi-attractor hilltop inverse-hilltop generalization of Starobinsky model natural inflation Higgs inflation singular potential power-law inflation monomial run-away run-away (exponential potential) chaotic

  22. 22 Correspondence to universality classes of inflation

  23. 23 General Pole Inflation As a realization of Universality Classes Figures from [Garcia-Bellido, Roest, 1402.2059] p > 2 w/ sing. pot. w/ sing. pot. p = 2 p < 2 p = 1 p > 2 w/ log. corr. p = 2 p = 2

  24. ここまでのまとめ インフラトン作用の極と次数による分類は、 
 さて、どのクラスが現実的でしょう? 24 インフレーション模型は Universality class に分類できる。 • • それを実現する具体例となっている。 •

  25. Initial condition problems: Small-field or Large-field?

  26. 26 How likely the slow-roll is? Small field Large field Figures from a review [Brandenberger, 1601.01918]

  27. 3+1次元数値計算で 非一様性が大きくてもインフレーションが起こる事を示した。 27 Inhomogeneous initial conditions [East, Kleban, Linde, and Senatore, 1511.05143] スカラー場の揺らぎがスローロールの領域を越えない限り hr φ · r φ i = 10 3 Λ 結論 small field: チューニングが必要 large field: robust

  28. 28 △ ◎ ◎ ◎ ◎ 初期条件 △ × △ ◯ ◎ 観測的ステータス × Universality classes of inflation [Mukhanov, 1303.3925] [Roest, 1309.1285] [Garcia-Bellido et al., 1402.2059] [Binetruy et al., 1407.0820] Any underlying mechanism for the universality?

  29. Shift symmetry and its origin

  30. 30 Planck-suppressed terms are NOT suppressed enough! ✓ φ ◆ n V ∼ m 2 φ 2 + λ 3 φ 3 + λ 4 φ 4 + X λ 4+ n φ 4 M P n> 4 In particular, V φ 2 η = O (1) M 2 P Also a naturalness question: m ⌧ M P (or Λ ) Why ? See e.g. a good review [Westphal, 1409.5350].

  31. 31 Shift symmetry φ → φ + c with an explicit, soft breaking V ( φ ) ⌧ 1 Perturbative quantum gravity corrections: [Smolin, PLB 93, 95 (1980)] ✓ a V 00 ◆ + b V δ V ∼ V [Linde, PLB 202 (1988) 194] M 2 M 4 [Kaloper, Lawrence, Sorbo, 1101.0026] P P Technically natural. [’t Hooft, NATO Sci.Ser.B 59 (1980) 135]

  32. 32 Shift symmetry in SUGRA SUSY breaking e ff ects m soft ∼ O ( H ) Why ( ) ? m ⌧ H η ⌧ 1 SUGRA scalar potential + 1 V = e K ⇣ j W − 3 | W | 2 ⌘ ¯ ji D i W ¯ 2 f AB D A D B K D ¯ where . D i W = W i + K i W shift symmetry [Kawasaki, Yamaguchi, Yanagida, hep-ph/0004243] K ( Φ , ¯ Φ ) = K ( i ( Φ − ¯ Φ )) Φ → Φ + c

  33. 33 U(1) R Origin of the shift symmetry? shift symmetry … non-linearly realized symmetry … any linear realization? [Freese, Frieman, Olinto, PRL 65 (1990) 3233] Axion Dilaton pNG boson of U(1) or pNG boson of scale invariance Wilson line of extra dimensions Inverse-hilltop class と chaotic class は、このどちらかに帰着するべき?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend