thermal stress cooling of j parc neutrino target
play

Thermal stress & cooling of J-Parc neutrino target Introduction - PowerPoint PPT Presentation

Thermal stress & cooling of J-Parc neutrino target Introduction neutrino target requirement for target Thermal stress Cooling S . Ueda heat transfer coefficient cooling test JHF target monitor R&D group summary 2 Introduction


  1. Thermal stress & cooling of J-Parc neutrino target Introduction neutrino target requirement for target Thermal stress Cooling S . Ueda heat transfer coefficient cooling test JHF target monitor R&D group summary

  2. 2 Introduction � Beam 50 [GeV] proton, 0.75 [MW] 3 × 10 14 [protons / spill] , 5 [ μ sec/spill] 3.3 [sec](between spills) , 8 [bunch/spill] � Material graphite or C/C composite Because of; high melting point(~3700 ℃ ) thermal resistance � Cooling water cooling � Shape cylindrical 900mm long(2 λ int) & 12~15mm radius Cooling pipe from one-side horn beam Target 900mm

  3. 3 Requirements for target � More pion Pion yield 1.2 1.0 � Thermal shock resistance 0.8 � Possibility to cool 0.6 The effects of target radius 0.4 radius σ beam = � Larger radius 0.2 2 . 5 pion yield decreases 0 2.5 5 7.5 10 12.5 15 Target Size(mm) � Smaller radius [K] � Temperature increases more thermal stress � surface area decreases difficult to cool The optimization is needed Temperature rise at center

  4. 4 Energy deposit J/g degree R cal. w/ MARS Z heat distribution in 1pulse (15mm radius) [J/g] 20%difference r=13mm r=15mm

  5. 5 Thermal stress � Stress estimation � Stress estimation α 2 E T σ ≈ − stat 0 z − ν 3 1 α E T quasi-static stress σ ≈ − stat 0 r − ν 3 ( 1 ) (non-uniform heating) α E T σ φ ≈ − stat 0 − ν 3 ( 1 ) dynamical stress 1 σ ≈ ± α dyn E T 0 z 3 (rapid heating) E: Y o u n g ’ s m o d u l u s ν: P o i s s o n r a t i o α: l i n e a r e x p a n s i o n c o e f f . � Material fatigue Material fatigue � T : T e m p e r a t u r e a t c e n t e r 0 after repeating stress(10 6 times), tensile strength become 0.8 (IG-110).

  6. Material properties Ⅰ 6 � Temperature dependence Temperature dependence � specific heat tensile strength [J/g] � max temp. rise(G347) r=13mm 234.2[K] almost the same r=15mm 200.6[K]

  7. Material properties Ⅱ 7 thermal expansion coeff.(G347) Young’s modulus(G347) ] a p ] G K [ / 1 [ 6 - 0 1 temperature dependence exists these effects should be taken into account.

  8. 8 Safety factor � Definition Definition � safety factor = ( tensile strength / σ eq ) − ν 2 σ = σ − σ + σ − σ + σ − σ ≤ α 2 2 2 {( ) ( ) ( ) } / 2 E T eq x y y z z x 0 − ν 3 ( 1 ) � Result � Result (include fatigue 、 material properties) σ eq σ eq Type tensile strength[Mpa] r=13[MPa] r=15[MPa] Toyo Tanso IG-43 37.2 29.8 8.92(3.3) 7.48 (4.0) Tokai Carbon G347 31.4 25.1 6.43(3.9) 5.55 (4.5) () is safety factor These graphite have sufficient safety factor

  9. 9 Cooling � Requirement � Requirement � cool down 60kJ in 3.3 sec � keep T surf under 100 ℃ Q : heat transfer [kW] � α is a key parameter! is a key parameter! S : surface area [m 2 ] Q = α S(T surf - T water ) = α S ΔT Tsurf : temp. at surface[K] Twater : temp. of water [K] T surf = T water + Δ T α : heat transfer coeff. T water ← Δ T ← α [kW/m 2 /K] T water α depends water cooling test Q target α need to be measured T surf

  10. Analytical estimation of Δ T 10 � Δ Δ T(t) T(t) � depends on ・ initial condition : T rise (r) ・ heat transfer coeff : α ΔT Temp. rise at 5 μ sec α = 6 ] K [ Averaged in z direction

  11. 11 Water temperature � T T water (r) (at Z=900mm) � water (r) T surf = T water + Δ T to estimate maximum T surf , max of T water is necessary water Q beam T water has max at Z=900mm Z=0mm Z=900mm ] Water temp. ℃ heat transfer ∝ Δ T [ α = 6 T water takes maximum value 20[l/min] target at 0.8sec beam in

  12. α 12 & flow rate ] � Calculation result ℃ [ T surf =Δ T + T water more water flow rate water temp rise : smaller acceptable α : lower � Relation between α & flow rate Flow rate& α satisfy T surf <100 ℃ allowable 15 [l/min] -> more than 6.5 [kW/m 2 /K] 20 [l/min]->more than 5.8 [kW/m 2 /K] Is needed

  13. 13 Cooling test � Purpose measure the heat transfer coeff. � How heat up the graphite with DC current , and cool by flowing water � Measurement temperatures,water flow rate ,current Q α = − S ( T T ) surf water α : heat transfer coeff. [kW/m 2 /K] Q :heat transfer [W] T surf :surface temperature [K] T water :water temperature [K] S :surface area [m 2 ]

  14. 14 Setup of cooling test � Current ~ 1.2kA(20kW) � Water flow 8.9 , 12[l/min] � Target radius 15mm water thermocouples target DC current Current feeds 900mm

  15. 15 Cooling test results � � α increase with 6.5[kW/m 2 /K] surface temperature ] at 15[l/min] K & water flow rate 2 m / W k [ compared with the α condition extrapolate with theoretical formula [ ℃ ]

  16. 16 Comparison w/ theoretical formula � Theoretical formula × × × λ 0 . 8 0 . 4 0 . 023 Re Pr α = d Re(T) :Reynolds number Pr(T) :Prandtl number λ (T) : Thermal conductivity d : equivalent diameter � Result Data and calculation seems to agree at 20 [l/min] , α expected to satisfies the condition !

  17. 17 Summary � Thermal stress max stress safety factor IG-43 7.48[MPa] 4.0 r =15mm G347 5.55[MPa] 4.5 relations between α & flow rate � cooling calc. r=15mm 15[l/min] ,6.5[kW/m 2 /K] 20[l/min] ,5.8[kW/m 2 /K] � cooling test possible to cool at more than 20[l/min]

  18. 18 Schedule � Next cooling test with more flow rate We plan to test with 20 [l/min] this month

  19. 19 reference1 � off-axis-beam ⇒ high intensity Super-K. narrow energy band Decay Pipe θ Target Horns

  20. 20 reference2

  21. reference 3 21 σ σ σ σ stat stat stat dyn � � , , , φ z r z α   E 2 R ∫ σ = − stat   ( ) ( ) rT r dr T r z − ν  2  0 1 R α   E 1 1 R r ∫ ∫ σ = − stat   rT ( r ) dr rT ( r ) dr r 1 ν −  2 2  0 0 R r α   E 1 1 R r ∫ ∫ σ φ = + − stat   rT ( r ) dr rT ( r ) dr T ( r ) − ν   2 2 0 0 1 R r 2 R ∫ σ = ± α dyn ( ) E rT r dr z 2 0 R { } − ν 2 σ = σ − σ + σ − σ + σ − σ ≤ α 2 2 2 ( ) ( ) ( ) / 2 E T eq x y y z z x 0 − ν 3 ( 1 )

  22. reference 4 22 Δ T(r) time development � Δ T(r) time development � When the target surface is cooled (at r=R)with α , temperature difference between Tsurf and Twater ∆ ( τ ( at r,time= τ ) : is, T r , ) T 0 r ( )   = + T ( r , 0 ) ur v   λ :heat conductivity ∂ ∂ 2 ∂ T T 1 T = +  a ( ) ∂ τ ∂ a:thermal diffusivity ∂ 2  r r r  ∂ α   T = −    T = ∂ λ r R    r = r R R ∫ ∞ 2 T ( r ) rJ ( q r ) dr ∑ 0 0 n − n τ 2 ∆ τ = q a 0 T ( r , ) e J ( q r ) { } 0 n + 2 R J ( q R ) J ( q R ) = n 1 0 n 1 n α R = = ⋅ ⋅ ⋅ q RJ ( q R ) J ( q R )( n 1 , 2 , ) ただし 1 0 n n λ n

  23. reference 5 23 � Δ T[K] Δ T[K]

  24. 24 reference6

  25. 参考6 25 � 熱量と 中心温度から 表面温度 長さ 方向に熱の移動がないと 仮定し た場合、 タ ーゲッ ト 内部では一様発熱。 dT = − π λ = π 2 Q ( r ) 2 rc r q Q(r) dr − λ = aT Ae r 2 1 aqR − = − + aT T ln( e center ) surf 4 a A λ: 熱伝導度 c : 比熱 q : 単位体積当たり の発熱量 R : 半径

  26. 冷却試験 26 � data � data 14.9 Q α = 12.2 − S ( T T ) 4.2 surf water POWER :4.2kW~19.4kW flow rate :8.9 ,12[l/min] each data points are averaged 19.4 15.2 12.4 4.2

  27. ������� 27 Primary Proton JPARC neutrino beamline Primary proton beam line beam line Extraction Proton beam kinetic energy Extraction point ( ���� ) point 50GeV ring 50GeV Cryogenics Cryogenics (40GeV@T=0) # of protons / pulse 3.3x10 14 Beam power Target target Target station target station 750kW Decay volume 130m Decay volume Bunch structure 8 bunches ( ����� Bunch length (full width) Beam dump beam dump 58ns ( ������ ) Bunch spacing Muon monitor muon monitor 280m ( ��������� ) 598ns Spill width ~5 µ s Near neutrino Near detector detector Cycle 3.53sec

  28. J-PARC ニュ ート リ ノ実験 28 目的 目的 � ν μ → ν e � ν μ disappearance � CPV in lepton sector 十分な統計が必要 J-PARC K2K Energy (GeV) 50 12 Int. (10 12 ppp) 330 6 beam 間隔 (sec) 3.3 2.2 Power (kW) 750 5.2 π + μ + proton ν μ ホーン タ ーゲッ ト decay pipe

  29. [ G p a ] 29

  30. 30 Water flow 1 water target 900mm

  31. 31 Water flow 2 � s water target 900mm

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend