theories of ew symmetry breaking and precision data after
play

Theories of EW symmetry breaking and precision data after LEP2 3) - PowerPoint PPT Presentation

Theories of EW symmetry breaking and precision data after LEP2 3) Universal models: S, 1) The little hierarchy problem T, W, Y 2) Relevance of LEP2 4) Extra d, little Higgs, SUSY,. . .


  1. Theories of EW symmetry breaking and precision data after LEP2 3) Universal models: ˆ S, ˆ 1) The little hierarchy ‘problem’ T, W, Y 2) Relevance of LEP2 4) Extra d, little Higgs, SUSY,. . . アレサンナロ ��� スツルミア �� - �� 14 ㈰2㈪05 From works with Barbieri, Marandella, Pomarol, Rattazzi, Schappacher

  2. The higgs hierarchy ‘problem’... Recent experimental progress ? 1) Direct and indirect data showed that the top is heavy , m t ≈ 180 GeV 2) Indirect data suggest the existence of a light higgs , m h < ∼ 200 GeV This shifts ‘solutions’ to the hierarchy problem towards lower energies. In the SM, cut-offing top loop at E < Λ UV ≈ 12 λ 2 δm 2 h ≈ δm 2 (4 π ) 2 Λ 2 t h (top) = UV δm 2 ∼ m 2 h < Λ UV < if ∼ 400 GeV no longer few TeV! h But at the same time m > 3) direct: no new detectable particles, ˜ ∼ 100 GeV. 4) indirect: no new non-renormalizable-operators, Λ > ∼ 10 TeV.

  3. ...and its ‘solutions’ A lot of activity before LHC... Two types of solutions: I New symmetry implies m h = 0; its breaking gives the EW scale – Supersymmetry : t → ˜ t stop stops top. – Attempts with scale symmetry, 5d gauge invariance, little Higgs . II h becomes an extended object 1 / Λ ∼ TeV – Technicolor : h = hadron of a QCD-like group with Λ TC < ∼ TeV > – Large extra dimensions : h = string with length ∼ 1 / TeV? – Warped extra dimension (AdS dual to CFT ‘walking technicolor’) Precision data disfavour type II solutions

  4. Extended particles ↔ form factors LEP finds that SM fermions, gauge bosons and also the Higgs are point-like. (Although the Higgs has not been discovered, its properties have been tested because the 3 massive SM vector boson acquired a longitudinal polarization eating 3 components of the Higgs doublet). Form-factors in QFT are introduced as higher dimensional operators, that encode the low energy effects of new physics too heavy to be directly seen. Even restricting to SU(2) L ⊗ U(1) Y , B, L, B i , L i , CP symmetric operators...

  5. L eff = L SM + O / Λ 2 operator O affects constraint on Λ 1 Lγ µ τ a L ) 2 2 (¯ µ -decay 10 TeV 1 Lγ µ L ) 2 2 (¯ LEP 2 5 TeV | H † D µ H | 2 θ W in M W /M Z 5 TeV ( H † τ a H ) W a θ W in Z couplings 8 TeV µν B µν i ( H † D µ τ a H )(¯ Lγ µ τ a L ) Z couplings 10 TeV i ( H † D µ H )(¯ Lγ µ L ) Z couplings 8 TeV Dλ D λ U λ † H † ( ¯ U γ µν Q ) F µν b → sγ 10 TeV Qλ U λ † 1 U γ µ Q ) 2 2 ( ¯ B mixing 6 TeV Cut-off above 10 TeV leaves δm 2 h ∼ 500 m 2 h : ‘little hierarchy problem’

  6. Heavy universal new physics

  7. Kinds of new physics ◦ Generic: p -decay, ν masses. see-saw, GUT ◦ B, L conserving: EDM, µ → eγ , ε K ,. . . ◦ Minimal Flavour Violation: b → sγ , B -mixing,... only SUSY? • ‘Universal’ (i.e. not coupled to fermions): ˆ S, ˆ T, W, Y .Little Higgs, extra d ◦ Effects only in Higgs: S, T . some technicolor

  8. Heavy universal new physics ‘ Universal ’: affects only inverse propagators of vectors: p 2 − M 2 + SM loops + Π( p 2 ) ‘ Heavy ’: expand new physics corrections Π( p 2 ) as Π( p 2 ) = Π(0) + p 2 Π ′ (0) + p 4 2 Π ′′ (0) + · · · 3 coefficients for each kinetic term: Π W + W − , Π W 3 W 3 , Π W 3 B , Π BB . 3 · 4 = 12 coefficients. 3 are just redefinitions of the SM parameters g, g ′ , v . 2 combinations vanish because γ must be massless and coupled to Q = T 3 + Y . Adimensional form factors custodial SU(2) L ( g ′ /g ) � Π ′ = W 3 B (0) + S − M 2 W � T = Π W 3 W 3 (0) − Π W + W − (0) − − Π ′ W 3 W 3 (0) − Π ′ − � U = W + W − (0) − − 2 M − 2 Π ′′ W 3 W 3 (0) − Π ′′ W V = W + W − (0) − − 2 M − 2 Π ′′ = W 3 B (0) + W X − 2 M − 2 Π ′′ = BB (0) + + W Y 2 M − 2 Π ′′ W W = W 3 W 3 (0) + + 2 M − 2 Π ′′ W Z = GG (0) + + 3 are suppressed ( V ≪ ˆ U ≪ ˆ T and X ≪ ˆ S ). 5 remain: ˆ S, ˆ T, W, Y and Z

  9. Final result Adimensional form factor operator effect ( g ′ /g ) � Π ′ ( H † τ a H ) W a S = W 3 B (0) µν B µν correction to s W M 2 | H † D µ H | 2 W � T = Π W 3 W 3 (0) − Π W + W − (0) correction to M W /M Z 2 M − 2 Π ′′ ( ∂ ρ B µν ) 2 / 2 = BB (0) anomalous g 1 ( E ) W Y 2 M − 2 Π ′′ ( D ρ W a µν ) 2 / 2 W W = W 3 W 3 (0) anomalous g 2 ( E ) 2 M − 2 Π ′′ ( D ρ G A µν ) 2 / 2 W Z = GG (0) anomalous g 3 ( E ) (We here use canonically normalized vectors) If the higgs exists, ˆ S, ˆ T, Y, W, Z correspond to dimension 6 operators. Neglected form factors (e.g. U ) correspond to dimension 8 operators. Extended H gives ˆ S, ˆ T . Extended vector bosons give W, Y, Z . T probed by comparing s W ( M W , M Z ) with s W ( α, G F , M Z ) with s W ( g Z V , g Z • ˆ S, ˆ A ) • W, Y probed by comparing (low E with Z -pole) and ( Z -pole with LEP2).

  10. S, ˆ ˆ T, W, Y from data

  11. Observables: at and below the Z pole Corrections to Z -pole observables from universal new physics are condensed in T − W − Y s 2 W δε 1 = � δε 3 = � , δε 2 = − W , S − W − Y . c 2 W A few observables ( M Z , M W , α, G F , g Z V ℓ , g Z Aℓ ) measured with per-mille accuracy. Corrections to any low-energy observable are easily computed from √ d L γ µ u L ] + h.c. + ν L γ µ ℓ L ][¯ L eff ( E ≪ M Z ) = L QED , QCD − 2 2 G F [¯   2 √ � ψ ( T 3 − s 2 ¯ 2 G F (1 + �   − 4 T ) W k Q ) γ µ ψ ψ = Q,L S − c 2 T + W ) − s 2 � W ( � W Y k = 1 + . c 2 W − s 2 W Measured with per-cent accuracy: little impact.

  12. Global fit Large effects still allowed χ 2 (ˆ W,Y χ 2 (ˆ χ 2 ( W, Y ) = min χ 2 (ˆ S, ˆ S, ˆ S, ˆ T ) = min T, W, Y ) T, W, Y ) S, ˆ ˆ T 10 10 90, 99% CL (2 dof) 90, 99% CL (2 dof) 5 5 1000 T ^ 1000 W 0 0 -5 -5 -10 -10 -10 -5 0 5 10 -10 -5 0 5 10 ^ 1000 Y 1000 S 4 − 3 = 1: ε 1 , 2 , 3 give bands; adding low-energy transforms into long ellipses.

  13. Observables: above the Z -pole e → f ¯ Corrections to LEP2 e ¯ f cross sections: use modified propagators Z γ   − c 2 W W + s 2 W Y 1 δε 1 + = Z   p 2 − M 2 p 2 − M 2  M 2    Z Z W   − c 2 W ( δε 1 − δε 2 ) − s 2 p 2 − s 2 W W + c 2   W δε 3 − s W c W ( W − Y ) 1 W Y   γ s W c W ( p 2 − M 2 M 2 M 2 Z ) W W e f Z, γ _ _ e f Measured with per-cent accuracy, but effects of W, Y enhanced by p 2 /M 2 Z ∼ 5 (Measurements of s W below the Z -peak are well emphasized: APV, Møller, NuTeV. LEP2 has comparable accuracy above the Z -peak, and is missed)

  14. Global fit after LEP2 T , W , Y parameters must vanish within few · 10 − 3 All ˆ S , ˆ χ 2 (ˆ W,Y χ 2 (ˆ χ 2 ( W, Y ) = min χ 2 (ˆ S, ˆ S, ˆ S, ˆ T ) = min T, W, Y ) T, W, Y ) S, ˆ ˆ T 10 10 90, 99% CL (2 dof) 90, 99% CL (2 dof) 5 5 1000 T 1000 W ^ 0 0 -5 -5 -10 -10 -10 -5 0 5 10 -10 -5 0 5 10 ^ 1000 Y 1000 S Hard time for Higgsless, little-Higgs etc.

  15. LEP1 vs LEP2: χ 2 (ˆ S = 0 , ˆ T = 0 , W, Y ) 10 5 EWPT Models 1000 W 0 -5 LEP2 90, 99% CL (2 dof) -10 -10 -5 0 5 10 1000 Y LEP2 relevant and shifts towards W < 0. Models give W, Y ≥ 0 Precise analysis by LEP2 experimentalists would be welcome

  16. Universal models

  17. Hidden universal models Popular models (vectors in extra dimensions, little-Higgs,. . . ) have extra heavy vectors coupled to SM fermionic gauge currents J F . Integrating out heavy vector mass eigenstates gives additional operators:  4-fermion operators   O ∼ ( J F + J H ) 2 = ( ¯ ψγ µ ψ + iH † D µ H ) 2 = corrections to Z, W, γ couplings   corrections to Z, W, γ masses Looks non-universal, so analyses performed by computing all observables. A posteriori can be rewritten as universal: e.g. on shell J B µ J B µ = ( ∂ α B µν ) 2 / 2 → Y . How to skip superfluous steps putting a priori effects in SM vector propagators? 1 1 1 → + p 2 − m 2 p 2 − m 2 p 2 − m 2 new SM SM

  18. How to compute ˆ S, ˆ T, W, Y Do not integrate out the heavy vector mass eigenstates. Integrate out vector bosons not coupled to SM fermions. ⋆ Apparently non-universal operators involving fermions not generated. ⋆ No need of diagonalizing and indentifying heavy mass eigenstates. It works like a pig → sausage machine: 1) Choose a model; write kinetic matrix Π full of neutral ( W 3 , B, . . . ) and charged ij ( W ± , . . . ) vectors. ( . . . indicates extra vectors not coupled to SM fermions) 2) Π − 1 = (Π full ) − 1 restricted to SM vectors 3) Extract ˆ S, ˆ T, W, Y from Π 4) Compare with χ 2 (ˆ S, ˆ T, W, Y )

  19. A simple example: U(1) Y ⊗ U(1) ′ Y Extra hypercharge vector with mass M not mixed with SM. 1) Kinetic matrix: W 3 B ′ B µ µ µ   p 2 − M 2 Z s 2 M 2 0 B µ Z s W c W W   Π full = p 2 − M 2 W 3 M 2 Z c 2   0 Z s W c W µ   W p 2 − M 2 B ′ 0 0 µ 2) Integrate out B µ − B ′ µ not coupled to fermions: go to the basis ( B, W 3 , B − B ′ ), invert Π full and restrict to B, W 3 : the result of course is � � − 1 � � p 2 − M 2 1 / ( p 2 − M 2 ) Z s 2 M 2 Z s W c W 0 Π − 1 = W + p 2 − M 2 M 2 Z c 2 Z s W c W 0 0 W T/t 2 W = M 2 W /M 2 , W = 0. LEP1 not affected: δε 1 , 2 , 3 = 0 3) Extract ˆ S = Y = ˆ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend