the separation of two matrices and its application in
play

The separation of two matrices and its application in eigenvalue - PowerPoint PPT Presentation

The separation of two matrices and its application in eigenvalue perturbation theory Michael Karow Matheon, TU-Berlin Outline. The 3 definitions of separation Inclusion theorems for pseudospectra of block triangular matrices


  1. The separation of two matrices and its application in eigenvalue perturbation theory Michael Karow Matheon, TU-Berlin

  2. Outline. • The 3 definitions of separation • Inclusion theorems for pseudospectra of block triangular matrices • Perturbation bounds for invariant subspaces

  3. The definitions of separation

  4. 10 5 0 −5 Pseudospectra −10 −10 −5 0 5 10 The pseudospectrum of A ∈ C n × n to the perturbation level ǫ > 0 is Λ ǫ ( A ) := set of all eigenvalues of all matrices of the form A + E, where E ∈ C n × n , � E � ≤ ǫ . union of the spectra Λ( A + E ) where E ∈ C n × n , � E � ≤ ǫ = � ( zI − A ) − 1 � − 1 ≤ ǫ } . = Λ( A ) ∪ { z ∈ C \ Λ( A ) | In this talk � · � denotes the spectral norm. Then Λ ǫ ( A ) := { z ∈ C | σ min ( zI − A ) ≤ ǫ } .

  5. Separation of two matrices: Demmel’s definition Pseudospectra of L ∈ C ℓ × ℓ (blue) and M ∈ C m × m (red): 6 4 ǫ = 0 . 50 2 0 −2 −4 −6 −6 −4 −2 0 2 4 6

  6. Separation of two matrices: Demmel’s definition Pseudospectra of L ∈ C ℓ × ℓ (blue) and M ∈ C m × m (red): 6 4 ǫ = 0 . 80 2 0 −2 −4 −6 −6 −4 −2 0 2 4 6

  7. Separation of two matrices: Demmel’s definition Pseudospectra of L ∈ C ℓ × ℓ (blue) and M ∈ C m × m (red): 6 4 ǫ = 1 . 19 2 0 −2 −4 −6 −6 −4 −2 0 2 4 6

  8. Separation of two matrices: Demmel’s definition Pseudospectra of L ∈ C ℓ × ℓ (blue) and M ∈ C m × m (red): 6 4 ǫ = 1 . 19 = sep D λ ( L, M ) 2 0 −2 −4 −6 −6 −4 −2 0 2 4 6 sep D λ ( L, M ) = min { ǫ | Λ ǫ ( L ) ∩ Λ ǫ ( M ) � = ∅ } = min z ∈ C max { σ min ( zI − L ) , σ min ( zI − M ) }

  9. Separation of two matrices: Varah’s definition Pseudospectra of L ∈ C ℓ × ℓ (blue) and M ∈ C m × m (red): 6 4 ǫ 1 = 1 . 5 2 0 ǫ 2 = 0 . 85 −2 −4 −6 −6 −4 −2 0 2 4 6 sep V λ ( L, M ) = min { ǫ 1 + ǫ 2 | Λ ǫ 1 ( L ) ∩ Λ ǫ 2 ( M ) � = ∅ } = min z ∈ C [ σ min ( zI − L ) + σ min ( zI − M )]

  10. Separation of two matrices: Stewart’s definition Definition uses Sylvester-operator Z �− → T ( Z ) = MZ − ZL : sep( L, M ) = min | =1 | | MZ − ZL | | | . | | | Z | | | Facts: • sep( L, M ) � = 0 iff T nonsingular iff Λ( L ) ∩ Λ( M ) � = ∅ • sep( L, M ) ≤ sep V λ ( L, M ) if | | · | | | is unitarily invariant. | Proof: Λ( L + E 1 ) ∩ Λ( M + E 2 ) � = ∅ ⇒ 0 = sep( L + E 1 , M + E 2 ) | =1 | | ( M + E 2 ) Z − Z ( L + E 1 ) | | | | = min | | Z | | | ≥ sep( L, M ) − � E 1 � − � E 2 � ⇒ � E 1 � + � E 2 � ≥ sep( L, M )

  11. Comparison of the separations Stewart’s definition: sep( L, M ) = min | =1 | | MZ − ZL | | | | | | Z | | | Varah’s definition: sep V λ ( L, M ) = min { ǫ 1 + ǫ 2 | Λ ǫ 1 ( L ) ∩ Λ ǫ 2 ( M ) � = ∅} Demmel’s definition: sep D λ ( L, M ) = min { ǫ | Λ ǫ ( L ) ∩ Λ ǫ ( M ) � = ∅} Computation of sep D λ in [Gu,Overton, 2006] . We have sep( L, M ) ≤ sep V λ ( L, M ) ≤ 2 sep D λ ( L, M ) ≤ dist(Λ(L) , Λ(M)) Equality holds if L and M are both normal and | | ·| | | is the Frobenius norm. | Remark: For (scaled) Jordan blocks L , M : sep( L, M ) << sep D λ ( L, M ) << dist(Λ(L) , λ (M))

  12. Application: Inclusion theorems for pseudospectra of block triangular matrices

  13. The Problem Let A ∈ C n × n be given in block Schur form: � � L C U ∗ , A = U U unitary , Λ( L ) ∩ Λ( M ) = ∅ . 0 M We always have Λ ǫ ( L ) ∪ Λ ǫ ( M ) ⊆ Λ ǫ ( A ) . Problem: Find a tight function g of ǫ such that Λ ǫ ( A ) ⊆ Λ g ( ǫ ) ǫ ( L ) ∪ Λ g ( ǫ ) ǫ ( M ) . ( ∗ ) Relevance: If � E � = ǫ and the union in ( ∗ ) is disjoint then precisely dim L eigenvalues of A + E are contained in Λ g ( ǫ ) ǫ ( L ). The others are contained in Λ g ( ǫ ) ǫ ( M ).

  14. Visualisation of the Problem Problem again: Find a tight function g of ǫ such that      L C Λ ǫ ⊆ Λ g ( ǫ ) ǫ ( L ) ∪ Λ g ( ǫ ) ǫ ( M ) .    0 M      L C grey region: Λ ǫ 6    0 M 4 blue region: Λ ǫ ( L ) 2 red region: Λ ǫ ( M ) 0 −2 blue curve: boundary of Λ g ( ǫ ) ǫ ( L ) −4 red curve: boundary of Λ g ( ǫ ) ǫ ( M ) −6 −6 −4 −2 0 2 4 6

  15. Upper bounds in terms of C Let A ∈ C n × n be given in block Schur form: � � L C U ∗ , A = U U unitary , Λ( L ) ∩ Λ( M ) = ∅ . 0 M Then Λ ǫ ( A ) ⊆ Λ g ( ǫ ) ǫ ( L ) ∪ Λ g ( ǫ ) ǫ ( M ) for � 1 + � C � g ( ǫ ) = ( Grammont, Largillier, 2002) ǫ and for � g ( ǫ ) = 1 1 4 + � C � 2 + ( Bora, 2001) ǫ Good: Simple bounds which show that Λ ǫ ( A ) ≈ Λ ǫ ( L ) ∪ Λ ǫ ( M ) for large ǫ. Bad: g ( ǫ ) → ∞ as ǫ → 0.

  16. Proof of the Grammont-Largillier-bound Let a z := max {� ( z I − L ) − 1 � , � ( z I − M ) − 1 �} . Then we have the following chain of inclusions and inequalities. ǫ − 1 � ( z I − A ) − 1 � z ∈ Λ ǫ ( A ) ⇒ ≤ � − ( z I − L ) − 1 C ( z I − M ) − 1 �� � ( z I − L ) − 1 � � = � � ( z I − M ) − 1 0 � � � a z 2 � C � �� � a z � � ≤ � � � 0 a z � 2 a z � C � + √ ( a z � C � ) 2 +4 = a z 2 � 2( ǫa z ) − 1 − a z � C � ( a z � C � ) 2 + 4 ⇒ ≤ � 1 + � C � /ǫ ) − 1 ⇒ ≤ ( ǫ a z ⇒ z ∈ Λ ǫ √ 1+ � C � /ǫ ( L ) ∪ Λ ǫ √ 1+ � C � /ǫ ( M ) .

  17. Demmel’s bound (1983) Let T be such that � � � � L C L 0 T − 1 T = . 0 M 0 M Then the Bauer-Fike-Theorem yields �� �� L C Λ ǫ ⊆ Λ � T � � T − 1 � ǫ ( L ) ∪ Λ � T � � T − 1 � ǫ ( M ) 0 M Problem: Find such T with smallest condition number � T � � T − 1 � . Solution: Let R be such that RM − LR = C . Then � � � I R/p 1 + � R � 2 T = p = , 0 I/p has smallest possible condition number � p 2 − 1 ≤ 2 p. κ := � T � � T − 1 � = p + � R � = p + � � � � � � L C I R Note: has invariant subspaces range , range 0 0 M I and p is the norm of the associated spectral projector.

  18. Illustration: invariant subspaces of � � � � L C L RM − LR A = = , Λ( L ) ∩ Λ( M ) = ∅ . 0 M 0 M invariant subspace R x I spectral projection I invariant subspace Px � � � � I R Invariant subspaces: range range , 0 I � � − R � I 1 + � R � 2 . Spectral projector: P = , p := � P � = 0 0

  19. Demmel’s result and the separation. Let A ∈ C n × n be given in block Schur form: � � � � L C L RM − LR U ∗ = U U ∗ , A = U U unitary , Λ( L ) ∩ Λ( M ) = ∅ . 0 M 0 M Let � � � R � 2 + 1 = p 2 − 1 + p. κ = � R � + Then for all ǫ ≥ 0, Λ ǫ ( A ) ⊆ Λ κǫ ( L ) ∪ Λ κǫ ( M ) , Moreover, if ǫ < sep D λ ( L, M ) /κ then Λ κǫ ( L ) ∩ Λ κǫ ( M ) = ∅ .

  20. Corollary to Demmel’s result. If L = λ I (i.e. λ is a semisimple eigenvalue of A ) then Λ ǫ ( A ) ⊆ Λ κ ǫ ( L ) ∪ Λ κ ǫ ( M ) 10 5 ∪ = D κ ǫ ( λ ) Λ κ ǫ ( M ) , 0 � �� � Disk of radius κǫ −5 � −10 p 2 − 1 + p where κ = � R � + p = ≈ 2 p −10 −5 0 5 10 � 1 + � R � 2 is the norm of the spectral projector. and p = Furthermore, if ǫ is small enough then D κ ǫ ( λ ) contains only one connected component C ǫ ( λ ) of Λ ǫ ( A ). But we know that for small ǫ C ǫ ( λ ) ≈ D p ǫ ( λ ) since p is the condition number of λ . Question: Is Demmel’s bound to large (factor ≈ 2)?

  21. Inclusion bound for small ǫ : Demmel’s separation Let A ∈ C n × n be given in block Schur form: � � � � L C L RM − LR U ∗ = U U ∗ , A = U U unitary , Λ( L ) ∩ Λ( M ) = ∅ . 0 M 0 M � � � R � 2 + 1 = p 2 − 1 + p . Let s D = sep D λ ( L, M ), κ = � R � + Then for ǫ ≤ s D /κ , 2.6 p+||R||= κ 2.4 Λ ǫ ( A ) ⊆ Λ g D ( ǫ ) ǫ ( L ) ∪ Λ g D ( ǫ ) ǫ ( M ) , g D ( ε ) where p g D ( ǫ ) = p + � R � 2 ǫ s D / κ s D − p ǫ. 1 0 0.05 0.1 0.15 0.2

  22. Inclusion bound for small ǫ : Varah’s separation Let A ∈ C n × n be given in block Schur form: � � � � RM − LR L C L U ∗ = U U ∗ , A = U U unitary , Λ( L ) ∩ Λ( M ) = ∅ . 0 0 M M � � � R � 2 + 1 = p 2 − 1 + p . Let s V = sep V λ ( L, M ), κ = � R � + Then for ǫ ≤ s V / (2 κ ), 2.6 p+||R||= κ 2.4 ⊆ Λ g V ( ǫ ) ǫ ( L ) ∪ Λ g V ( ǫ ) ǫ ( M ) , Λ ǫ ( A ) g V ( ε ) where p − ǫ/s V p g V ( ǫ ) = � . � � s V /(2 κ ) 1 4 − ǫ 1 p − ǫ 2 + s V s V 1 0 0.05 0.1 0.15 0.2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend