the risk channel of unconventional monetary policy
play

The Risk Channel of Unconventional Monetary Policy Dejanir Silva - PowerPoint PPT Presentation

The Risk Channel of Unconventional Monetary Policy Dejanir Silva UIUC dejanir@illinois.edu November, 2017 0 / 36 Dramatic change in central bank portfolio USD Billions 5,000.00 Composition FED Balance Sheet: 4,500.00 Other Assets Agency


  1. Firms • Linear technology: Y t = AK t • Law of motion of capital: dK t = g t dt + σ dZ t K t • Problem of the firm   � ∞ π s S t = max ( A − ι ( g s )) K s ds (1) E t   π t g ���� t � �� � q t K t dividends where ι ′ ( · ) , ι ′′ ( · ) > 0. 8 / 36

  2. Firms • Linear technology: Y t = AK t • Law of motion of capital: dK t = g t dt + σ dZ t K t • Problem of the firm   � ∞ π s S t = max ( A − ι ( g s )) K s ds (1) E t   π t g ���� t � �� � q t K t dividends where ι ′ ( · ) , ι ′′ ( · ) > 0. 8 / 36

  3. Firms • Linear technology: Y t = AK t • Law of motion of capital: dK t = g t dt + σ dZ t K t • Problem of the firm   � ∞ π s S t = max ( A − ι ( g s )) K s ds (1) E t   π t g ���� t � �� � q t K t dividends where ι ′ ( · ) , ι ′′ ( · ) > 0. • The SPD π t satisfies (determined in equilibrium): d π t = − r t dt − η t dZ t π t ���� ���� int. rate mkt. price of risk 8 / 36

  4. Firms • Linear technology: Y t = AK t • Law of motion of capital: dK t = g t dt + σ dZ t K t • Problem of the firm   � ∞ π s S t = max ( A − ι ( g s )) K s ds (1) E t   π t g ���� t � �� � q t K t dividends where ι ′ ( · ) , ι ′′ ( · ) > 0. • The SPD π t satisfies (determined in equilibrium): d π t = − r t dt − η t dZ t π t ���� ���� int. rate mkt. price of risk 8 / 36

  5. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,α j ) U j ( c j ) (2) subject to n j , t ≥ 0 and � � dn j , t r t + α j , t ( µ R , t − r t ) − c j , t = dt + α j , t σ R , t dZ t n j , t n j , t 9 / 36

  6. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,α j ) U j ( c j ) (2) subject to n j , t ≥ 0 and � � dn j , t r t + α j , t ( µ R , t − r t ) − c j , t = dt + α j , t σ R , t dZ t n j , t n j , t 9 / 36

  7. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,α j ) U j ( c j ) (3) subject to n j , t ≥ 0 and � � dn j , t r t + α j , t ( µ R , t − r t ) − c j , t = dt + α j , t σ R , t dZ t n j , t n j , t � �� � ≡ σ j , t 9 / 36

  8. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,σ j ) U j ( c j ) (4) subject to n j , t ≥ 0 and � � dn j , t r t + α j , t ( µ R , t − r t ) − c j , t = dt + σ j , t dZ t n j , t n j , t 9 / 36

  9. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,σ j ) U j ( c j ) (5) subject to n j , t ≥ 0 and   � µ R , t − r t �   dn j , t − c j , t   =  r t + α j , t σ R , t  dt + σ j , t dZ t   n j , t σ R , t n j , t � �� � ≡ σ j , t � �� � η t 9 / 36

  10. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,σ j ) U j ( c j ) (6) subject to n j , t ≥ 0 and � � dn j , t r t + σ j , t η t − c j , t = dt + σ j , t dZ t n j , t n j , t 9 / 36

  11. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,σ j ) U j ( c j ) (6) subject to n j , t ≥ 0 and � � dn j , t r t + σ j , t η t − c j , t = dt + σ j , t dZ t n j , t n j , t • Preferences: continuous-time EZ • EIS ψ > 1 and risk aversion γ j • Savers are more risk averse than bankers: γ s > 1 > γ b Empirical studies on heterogeneous risk aversion 9 / 36

  12. Active traders • Decision problem of active traders (bankers j = b , savers j = s ): V j = max ( c j ,σ j ) U j ( c j ) (6) subject to n j , t ≥ 0 and � � dn j , t r t + σ j , t η t − c j , t = dt + σ j , t dZ t n j , t n j , t • Preferences: continuous-time EZ • EIS ψ > 1 and risk aversion γ j • Savers are more risk averse than bankers: γ s > 1 > γ b Empirical studies on heterogeneous risk aversion • Mortality risk ⇒ stationary distribution 9 / 36

  13. Risk Concentration and Balance sheets Proposition (Risk Concentration) Suppose γ s > γ b , γ s − γ b small, then σ b , t − σ s , t > 0 . 10 / 36

  14. Risk Concentration and Balance sheets Proposition (Risk Concentration) Suppose γ s > γ b , γ s − γ b small, then σ b , t − σ s , t > 0 . Riskless asset Riskless liability Net Worth Risky Claims Risky Claims Net Worth Bankers Savers 10 / 36

  15. Passive Traders and the Central Bank • Passive traders invest on market portfolio ⇒ n p , t = α S t c p , t = α D t + T t (7) ���� ���� dividends transfers Evidence on passive behavior/limited participation 11 / 36

  16. Passive Traders and the Central Bank • Passive traders invest on market portfolio ⇒ n p , t = α S t c p , t = α D t + T t (7) ���� ���� dividends transfers Evidence on passive behavior/limited participation • Central bank is subject to No-Ponzi condition and � � dn cb , t r t + σ cb , t η t − T t = dt + σ cb , t dZ t (8) n cb , t n cb , t 11 / 36

  17. Passive Traders and the Central Bank • Passive traders invest on market portfolio ⇒ n p , t = α S t c p , t = α D t + T t (7) ���� ���� dividends transfers Evidence on passive behavior/limited participation • Central bank is subject to No-Ponzi condition and � � dn cb , t r t + σ cb , t η t − T t = dt + σ cb , t dZ t (8) n cb , t n cb , t 11 / 36

  18. Passive Traders and the Central Bank • Passive traders invest on market portfolio ⇒ n p , t = α S t c p , t = α D t + T t (7) ���� ���� dividends transfers Evidence on passive behavior/limited participation • Central bank is subject to No-Ponzi condition and � � dn cb , t r t + σ cb , t η t − T t = dt + σ cb , t dZ t (8) n cb , t n cb , t 11 / 36

  19. Passive Traders and the Central Bank • Passive traders invest on market portfolio ⇒ n p , t = α S t c p , t = α D t + T t (7) ���� ���� dividends transfers Evidence on passive behavior/limited participation • Central bank is subject to No-Ponzi condition and � � dn cb , t r t + σ cb , t η t − T t = dt + σ cb , t dZ t (8) n cb , t n cb , t 11 / 36

  20. Passive Traders and the Central Bank • Passive traders invest on market portfolio ⇒ n p , t = α S t c p , t = α D t + T t (7) ���� ���� dividends transfers Evidence on passive behavior/limited participation • Central bank is subject to No-Ponzi condition and � � dn cb , t r t + σ cb , t η t − T t = dt + σ cb , t dZ t (8) n cb , t n cb , t ( σ cb , t , T t ) determined by policy rules σ cb , t = σ cb ( x t , w t ); T t = T ( x t , w t ) where ( x t , w t ) is the vector of state variables. 11 / 36

  21. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t 12 / 36

  22. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t 12 / 36

  23. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t 12 / 36

  24. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t Market clearing condition for risk: x t σ b , t + (1 − x t ) σ s , t = ω r t ( σ + σ q , t ) � �� � net supply of risk 12 / 36

  25. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t Market clearing condition for risk: x t σ b , t + (1 − x t ) σ s , t = ω r t ( σ + σ q , t ) � �� � net supply of risk 12 / 36

  26. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t Market clearing condition for risk: x t σ b , t + (1 − x t ) σ s , t = ω r t ( σ + σ q , t ) � �� � net supply of risk share of risk held by active traders ω r t ≡ share of wealth held by active traders 12 / 36

  27. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t Market clearing condition for risk: x t σ b , t + (1 − x t ) σ s , t = ω r t ( σ + σ q , t ) � �� � net supply of risk share of risk held by active traders ω r t ≡ share of wealth held by active traders Market clearing condition for consumption: A − ι ( g t ) c s , t = ω d x t ˆ c b , t + (1 − x t )ˆ t q t 12 / 36

  28. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t Market clearing condition for risk: x t σ b , t + (1 − x t ) σ s , t = ω r t ( σ + σ q , t ) � �� � net supply of risk share of risk held by active traders ω r t ≡ share of wealth held by active traders Market clearing condition for consumption: A − ι ( g t ) c s , t = ω d x t ˆ c b , t + (1 − x t )ˆ t q t 12 / 36

  29. Aggregate State Variables and Market Clearing Define ( x t , w t ) as follows n b , t n cb , t x t = w t = n b , t + n s , t n b , t + n s , t + n cb , t Market clearing condition for risk: x t σ b , t + (1 − x t ) σ s , t = ω r t ( σ + σ q , t ) � �� � net supply of risk share of risk held by active traders ω r t ≡ share of wealth held by active traders Market clearing condition for consumption: A − ι ( g t ) c s , t = ω d x t ˆ c b , t + (1 − x t )ˆ t q t t ≡ share of dividends consumed by active traders ω d share of wealth held by active traders Definition ( ω r t , ω d Definition equilibrium t ) 12 / 36

  30. Unconventional Monetary Policy: Policy Rule 0.5 0.45 Banker’s share of wealth: x t 0.4 • Strong balance sheet ⇒ ω r = 1 0.35 • Weak balance sheet ⇒ ω r < 1 0.3 1- ω r 0.25 0.2 Unconventional ”Greenspan’s put” 0.15 • CB intervene in bad times 0.1 0.05 Transfers/low values of w 0 0 0.2 0.4 0.6 0.8 1 x 13 / 36

  31. Outline Environment 1 Balance sheet recession and the risk channel 2 Risk concentration and financial stability 3 Exit strategies 4 Long-term bonds 5 Effectiveness of asset purchases 6 Conclusion 7 13 / 36

  32. Two benchmarks 1) Homogeneous risk-aversion ( γ b = γ s ) : • No risk concentration σ b , t = σ s , t • Balanced growth path • No balance sheet recession 14 / 36

  33. Two benchmarks 1) Homogeneous risk-aversion ( γ b = γ s ) : • No risk concentration σ b , t = σ s , t • Balanced growth path • No balance sheet recession 2) Full participation benchmark: No passive traders. Fix initial ( σ cb , T ) and consider ( σ ∗ cb , T ∗ ). • Savers exactly offset policy change: σ ∗ � � s , t n ∗ s , t − σ s , t n s , t = − σ ∗ cb , t n ∗ cb , t − σ cb , t n cb , t • Neutrality result: no changes in consumption, prices, and investment • Modigliani-Miller / Ricardian Equivalance type of result (see Wallace (1981)). 14 / 36

  34. Net worth multipliers and demand for risk Net worth multipliers: V b ( n b , t ; x t , w t ) = ( ζ t n b , t ) 1 − γ b V s ( n s , t ; x t , w t ) = ( ξ t n s , t ) 1 − γ s 1 − γ b 1 − γ s • Net worth multiplier ζ t ( x t , w t ) (determined in equilibrium) d ζ t = µ ζ, t dt + σ ζ, t dZ t ζ t 15 / 36

  35. Net worth multipliers and demand for risk Net worth multipliers: V b ( n b , t ; x t , w t ) = ( ζ t n b , t ) 1 − γ b V s ( n s , t ; x t , w t ) = ( ξ t n s , t ) 1 − γ s 1 − γ b 1 − γ s • Net worth multiplier ζ t ( x t , w t ) (determined in equilibrium) d ζ t = µ ζ, t dt + σ ζ, t dZ t ζ t 15 / 36

  36. Net worth multipliers and demand for risk Net worth multipliers: V b ( n b , t ; x t , w t ) = ( ζ t n b , t ) 1 − γ b V s ( n s , t ; x t , w t ) = ( ξ t n s , t ) 1 − γ s 1 − γ b 1 − γ s • Net worth multiplier ζ t ( x t , w t ) (determined in equilibrium) d ζ t = µ ζ, t dt + σ ζ, t dZ t ζ t Demand for risk: η t + 1 − γ b σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging 15 / 36

  37. Net worth multipliers and demand for risk Net worth multipliers: V b ( n b , t ; x t , w t ) = ( ζ t n b , t ) 1 − γ b V s ( n s , t ; x t , w t ) = ( ξ t n s , t ) 1 − γ s 1 − γ b 1 − γ s • Net worth multiplier ζ t ( x t , w t ) (determined in equilibrium) d ζ t = µ ζ, t dt + σ ζ, t dZ t ζ t Demand for risk: η t + 1 − γ b • Myopic demand: current returns σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging 15 / 36

  38. Net worth multipliers and demand for risk Net worth multipliers: V b ( n b , t ; x t , w t ) = ( ζ t n b , t ) 1 − γ b V s ( n s , t ; x t , w t ) = ( ξ t n s , t ) 1 − γ s 1 − γ b 1 − γ s • Net worth multiplier ζ t ( x t , w t ) (determined in equilibrium) d ζ t = µ ζ, t dt + σ ζ, t dZ t ζ t Demand for risk: η t + 1 − γ b • Myopic demand: current returns σ b , t = ; σ ζ, t γ b γ b • Hedging demand: cyclicality of returns ���� � �� � myopic hedging 15 / 36

  39. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s   ω r   η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s 16 / 36

  40. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s   ω r   η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s 16 / 36

  41. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s    ω r  η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s Riskless asset Net Worth Riskless liability Deposits Risky Claims Risky Claims Risky Claims Net Worth Bankers Savers 16 / 36

  42. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s   ω r   η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s Riskless asset Net Worth Riskless liability Risky Claims Risky Claims Net Worth Bankers Savers 16 / 36

  43. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s   ω r   η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s Riskless asset Net Worth Risky Claims Riskless liability Risky Claims Net Worth Bankers Savers 16 / 36

  44. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s   ω r   η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s Riskless asset Net Worth Risky Claims Riskless liability Risky Claims Net Worth Bankers Savers 16 / 36

  45. Market price of risk   � �  1 − γ b σ ζ, t + (1 − x t )1 − γ s   ω r   η t = γ t t ( σ + σ q , t ) − x t σ ξ, t   γ b γ s ���� � �� �  agg. risk aversion � �� � net supply of risk avg. hedging demand where � x t � − 1 + 1 − x t γ t ≡ γ b γ s Riskless asset Net Worth Risky Claims Riskless liability Risky Claims Net Worth Bankers Savers 16 / 36

  46. Balance sheet recession A − ι ( g t ) ι ′ ( g t ) = q t q t = r t + ( σ + σ q , t ) η t − µ S , t 17 / 36

  47. Balance sheet recession A − ι ( g t ) ι ′ ( g t ) = q t q t = r t + ( σ + σ q , t ) η t − µ S , t 17 / 36

  48. Balance sheet recession A − ι ( g t ) ι ′ ( g t ) = q t q t = r t + ( σ + σ q , t ) η t − µ S , t 17 / 36

  49. Balance sheet recession A − ι ( g t ) ι ′ ( g t ) = q t q t = r t + ( σ + σ q , t ) η t − µ S , t Market price of risk Price of capital 1 0.95 0.8 0.9 0.6 0.85 log(q) η 0.4 0.8 0.2 0.75 0 0.7 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x Numerical solution 17 / 36

  50. Balance sheet recession A − ι ( g t ) ι ′ ( g t ) = q t q t = r t + ( σ + σ q , t ) η t − µ S , t Market price of risk Price of capital 1 0.95 0.8 0.9 0.6 0.85 log(q) η 0.4 0.8 0.2 0.75 0 0.7 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x Laissez-faire Central bank x Numerical solution 17 / 36

  51. Effect on Interest Rates Interest rate 3 Weak balance sheet of bankers: 2.5 • High aggregate risk aversion 2 • Precautionary savings 1.5 r 1 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 18 / 36

  52. Effect on Interest Rates Interest rate 3 Weak balance sheet of bankers: 2.5 • High aggregate risk aversion 2 • Precautionary savings 1.5 r Effect of asset purchases: 1 • Precautionary savings • Intertemporal substitution 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 18 / 36

  53. Taking stock: crises vs normal times Balance sheet recession • Weak balance sheet of bankers ⇒ high risk premium • High risk premium ⇒ low price of risky asset • EIS > 1 important for this result 19 / 36

  54. Taking stock: crises vs normal times Balance sheet recession • Weak balance sheet of bankers ⇒ high risk premium • High risk premium ⇒ low price of risky asset • EIS > 1 important for this result Unconventional monetary policy • Asset purchases ⇒ drop in market price of risk / rise in interest rates • Crises ⇒ risk premium dominates • Normal times ⇒ interest rate dominates 19 / 36

  55. Outline Environment 1 Balance sheet recession and the risk channel 2 Risk concentration and financial stability 3 Exit strategies 4 Long-term bonds 5 Effectiveness of asset purchases 6 Conclusion 7 19 / 36

  56. Risk Concentration and Financial Stability So far: • Effect on crises and normal times • What about probability of crises? • Concerns about reach-for-yield 20 / 36

  57. Risk Concentration and Financial Stability So far: • Effect on crises and normal times • What about probability of crises? • Concerns about reach-for-yield Endogenous risk • Concentration of risk on bankers is endogenous • Risk concentration ⇒ endogenous volatility • Endogenous volatility ⇒ stationary distribution 20 / 36

  58. Myopic and Hedging Demands η t + 1 − γ b σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging 21 / 36

  59. Myopic and Hedging Demands η t + 1 − γ b σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging 21 / 36

  60. Myopic and Hedging Demands η t + 1 − γ b σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging 21 / 36

  61. Myopic and Hedging Demands η t + 1 − γ b σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging 21 / 36

  62. Myopic and Hedging Demands η t + 1 − γ b • Sensitivity to η t : decreasing in γ b . σ b , t = ; σ ζ, t γ b γ b ���� � �� � myopic hedging Leverage Myopic component Hedging component 15 15 0 -0.5 -1 Hedging component Myopic component 10 10 σ b / ( σ + σ q ) -1.5 -2 5 5 -2.5 -3 0 0 -3.5 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x x 21 / 36

  63. Myopic and Hedging Demands η t + 1 − γ b • Sensitivity to η t : decreasing in γ b . σ b , t = ; σ ζ, t γ b γ b ���� � �� � • γ b < 1, σ ζ, t < 0 ⇒ negative hedging dem. myopic hedging Leverage Myopic component Hedging component 15 15 0 -0.5 -1 Hedging component Myopic component 10 10 σ b / ( σ + σ q ) -1.5 -2 5 5 -2.5 -3 0 0 -3.5 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x x 21 / 36

  64. UMP and Risk Concentration σ b , t = η t + 1 − γ b σ s , t = η t + 1 − γ s σ ζ, t ; σ ξ, t ; γ b γ b γ s γ s Risk concentration Myopic component Hedging component 0.8 0.8 0 0.7 0.7 -0.05 0.6 0.6 Hedgind component Myopic component 0.5 0.5 -0.1 σ b - σ s 0.4 0.4 -0.15 0.3 0.3 0.2 0.2 -0.2 0.1 0.1 0 0 -0.25 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x x 22 / 36

  65. Hedging and return-sensitivity effects Two opposing forces: UMP reduces counter-cyclicality of returns Bankers increase hedging demand Risk more concentrated on bankers (hedging) 23 / 36

  66. Hedging and return-sensitivity effects Two opposing forces: UMP reduces counter-cyclicality UMP reduces current returns of returns Bankers reduce Bankers increase myopic demand hedging demand Risk more concentrated on bankers Risk less concentrated on bankers (hedging) (return-sensitivity) 23 / 36

  67. Hedging and return-sensitivity effects Two opposing forces: UMP reduces counter-cyclicality UMP reduces current returns of returns Bankers reduce Bankers increase myopic demand hedging demand Risk more concentrated on bankers Risk less concentrated on bankers (hedging) (return-sensitivity) Why does risk concentration fall? (intuition) • Hedging effect relies on drop of endogenous volatility • If hedging effect dominates ⇒ increase in risk concentration • Endogenous volatility would increase: contradiction 23 / 36

  68. Endogenous volatility σ q , t = q x , t σ x , t + q w , t σ x , t = x t (1 − x t ) ( σ b , t − σ s , t ) σ w , t q t q t � �� � risk concentration 24 / 36

  69. Endogenous volatility σ q , t = q x , t σ x , t + q w , t σ x , t = x t (1 − x t ) ( σ b , t − σ s , t ) σ w , t q t q t � �� � risk concentration 24 / 36

  70. Endogenous volatility σ q , t = q x , t σ x , t + q w , t σ x , t = x t (1 − x t ) ( σ b , t − σ s , t ) σ w , t q t q t � �� � risk concentration 24 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend