the perrin mcclintock resolvent solvable quintics and
play

The Perrin-McClintock Resolvent, Solvable Quintics and Plethysms - PDF document

The Perrin-McClintock Resolvent, Solvable Quintics and Plethysms Frank Grosshans In his seminal paper of 1771, Lagrange found that certain polynomials of degree 6 called resolvents could be used to determine whether a quintic polynomial was


  1. The Perrin-McClintock Resolvent, Solvable Quintics and Plethysms Frank Grosshans In his seminal paper of 1771, Lagrange found that certain polynomials of degree 6 called resolvents could be used to determine whether a quintic polynomial was solvable in radicals. Among the various resolvents later discovered, the Perrin-McClintock resolvent has some particularly noteworthy properties. We shall discuss these properties and their application to solvable quintics. The properties suggest that the Perrin-McClintock resolvent may be unique. We discuss this question and relate it to the representation theory of the general linear group, especially zero weight spaces and plethysms of a special form. 1

  2. Properties of the Perrin-McClintock Resolvent Property 1: a polynomial function d = 1 , 2 , . . . � d � � d a i x d − i y i , f ( x, y ) = a i ∈ C i i =0 � d � � d � � d � a 0 x d + a 2 x d − 2 y 2 + . . . + a 1 x d − 1 y + a d y d = 1 2 d ↔ ( a 0 , a 1 , . . . , a d ) V d is vector space over C spanned by all such f ( x, y ) �� λ �� A 2 = C 2 = µ The Perrin-McClintock resolvent a polynomial, K : V 5 × A 2 → C � 6 κ j ( a 0 , a 1 , a 2 , a 3 , a 4 , a 5 ) x 6 − j y j K ( a 0 , a 1 , a 2 , a 3 , a 4 , a 5 ; x, y ) = j =0 � � x R f ( x ) = K ( f, ) 1 2

  3. Example 1 : f ( x ) = x 5 + 10 a 2 x 3 + 5 a 4 x + a 5 with a 4 = 4 a 2 2 5 ) x 6 − 125 a 4 K ( f, v ) = (3 a 6 2 + a 2 a 2 2 a 5 x 5 y + (4080 a 7 2 − 15 a 2 2 a 2 5 ) x 4 y 2 2 a 5 x 3 y 3 + (960 a 8 5 ) x 2 y 4 + (128 a 6 +1000 a 5 2 + 70 a 3 2 a 2 2 a 5 + a 2 a 3 5 ) xy 5 Example 2 : f ( x ) = x 5 + 5 x 4 + 9 x 3 + 5 x 2 − 4 x − 5 80000 ( − 498 x 6 − 5900 x 5 y − 22662 x 4 y 2 − 41320 x 3 y 3 − 36254 x 2 y 4 1 K ( f, v ) = − 6860 xy 5 + 8150 y 6 ) Example 3 : f ( x ) = x 5 − 8 x 4 + 5 x 3 − 6 x 2 + 8 x − 4 K ( f, v ) = − 5681513 x 6 + 22679884 x 5 y − 42714844 x 4 y 2 + 6325088 x 3 y 3 +16299792 x 2 y 4 − 18575936 xy 5 + 5294016 y 6 3

  4. Properties of the Perrin-McClintock Resolvent Property 2: a covariant �� a � � b SL (2 , C ) , g = : ad − bc = 1 c d action on V d g · x = dx − by g · y = − cx + ay � d � � d � � d � d a i x d − i y i → g · f = a i ( dx − by ) d − i ( − cx + ay ) i f = i i i =0 i =0 action on A 2 � � � � � � a b λ aλ + bµ · = c d µ cλ + dµ The covariant property (1) K ( g · f, g · v ) = K ( f, v ) for all g ∈ SL (2 , C ) , f ∈ V d , v ∈ A 2 (2) coefficients of x and y terms form irreducible representation of SL (2 , C ) � 1 � (3) source of covariant is K ( f, ) 0 completely determines K 4

  5. Properties of the Perrin-McClintock Resolvent The Hessian cubic covariant � � 5 2 g ∈ SL (2 , C ) , g = 17 7 action on V 3 g · x = 7 x − 2 y g · y = − 17 x + 5 y a 0 x 3 + 3 a 1 x 2 y + 3 a 2 xy 2 + a 3 y 3 → f = a 0 (7 x − 2 y ) 3 + 3 a 1 (7 x − 2 y ) 2 ( − 17 x + 5 y ) + 3 a 2 (7 x − 2 y )( − 17 x + 5 y ) 2 + a 3 ( − 17 x + 5 y ) 3 g · f = action on A 2 � � � � � � 5 2 λ 5 λ + 2 µ · = 17 7 µ 17 λ + 7 µ � � ∂ 2 f ∂ 2 f ∂x 2 1 ∂x∂y H ( a 0 , a 1 , a 2 , a 3 ; x, y ) = 36 Det ∂ 2 f ∂ 2 f ∂x∂y ∂y 2 1 ) x 2 + ( a 0 a 3 − a 1 a 2 ) xy + ( a 1 a 3 − a 2 = ( a 0 a 2 − a 2 2 ) y 2 5

  6. � 5 � 2 g = 17 7 f = 4 x 3 + 3 × 5 x 2 y + 3 × ( − 6) xy 2 + ( − 1) y 3 g · f = − 42624 x 3 + 37128 x 2 y − 10779 xy 2 + 1043 y 3 � � � � 8 46 v = ; g · v = 3 157 The covariant property (1) H ( g · f, g · v ) = H ( f, v ) for all g ∈ G , f ∈ V d , v ∈ A 2 H ( f, v ) = H (4 , 5 , − 6 , − 1; 8 , 3) = − 2881 H ( g · f, g · v ) = H ( − 42624 , 12376 , − 3593 , 1043; 46 , 157) = − 2881 (2) coefficients of x and y terms form irreducible representation of SL (2 , C ) ( a 0 a 2 − a 2 1 ) , ( a 0 a 3 − a 1 a 2 ) , ( a 1 a 3 − a 2 2 ) � � 1 ) = a 0 a 2 − a 2 (3) source of covariant is H ( f, 1 0 completely determines H algebraic meaning: H ( f, v ) = 0 for all v ∈ A 2 if and only if there is a linear form, say g = ax + by , such that f = g 3 . For example, f ( x, y ) = 64 x 3 − 144 x 2 y + 108 xy 2 − 27 y 3 . H ( f, v ) ≡ 0 , f ( x, y ) = (4 x − 3 y ) 3 [Abdesselam and Chipalkatti] 6

  7. Properties of the Perrin-McClintock Resolvent Property 3: solvable quintics Theorem . Let f ( x ) = a 0 x 5 + 5 a 1 x 4 + 10 a 2 x 3 + 10 a 3 x 2 + 5 a 4 x + a 5 be an irreducible quintic polynomial in Q [ x ] . Then f ( x ) is solvable in radicals if and only if R f ( x ) has a rational root or is of degree 5. Example 2 : f ( x ) = x 5 + 5 x 4 + 9 x 3 + 5 x 2 − 4 x − 5 80000 ( − 498 x 6 − 5900 x 5 y − 22662 x 4 y 2 − 41320 x 3 y 3 − 36254 x 2 y 4 1 K ( f, v ) = − 6860 xy 5 + 8150 y 6 ) 80000 ( − 498 x 6 − 5900 x 5 − 22662 x 4 − 41320 x 3 − 36254 x 2 1 R f ( x ) = − 6860 x + 8150) has root 1/3. Hence, f ( x ) is solvable in radicals. Example 3 : f ( x ) = x 5 − 8 x 4 + 5 x 3 − 6 x 2 + 8 x − 4 K ( f, v ) = − 5681513 x 6 + 22679884 x 5 y − 42714844 x 4 y 2 + 6325088 x 3 y 3 + 16299792 x 2 y 4 − 18575936 xy 5 + 5294016 y 6 R f ( x ) = − 5681513 x 6 + 22679884 x 5 − 42714844 x 4 + 6325088 x 3 + 16299792 x 2 − 18575936 x + 5294016 does not have a rational root. Hence, f ( x ) is not solvable in radicals. Get elegant way to find solutions in radicals Cayley to McClintock (McClintock, p.163): "McClintock completes in a very elegant manner the determination of the roots of the quintic equation . . . ." 7

  8. Properties of the Perrin-McClintock Resolvent Property 4: global information Problem : use resolvents to obtain global information about solvable quintics Example 1 (Perrin): a 0 x 5 + 10 a 2 x 3 + 5 a 4 x + a 5 f ( x ) = 4 a 2 with a 4 = 2 5 ) x 6 − 125 a 4 2 a 5 x 5 + (4080 a 7 R f ( x ) = (3 a 6 2 + a 2 a 2 2 − 15 a 2 2 a 2 5 ) x 4 2 a 5 x 3 + (960 a 8 5 ) x 2 + (128 a 6 +1000 a 5 2 + 70 a 3 2 a 2 2 a 5 + a 2 a 3 5 ) x has root 0. Hence, f ( x ) is solvable in radicals. Example 2 : the McClintock parametrization Have mapping ϕ , a rational function, A 4 Q → A 4 ϕ : Q ( p, r, w, t ) → ( γ, δ, ε, ζ ) x 5 + 10 γx 3 + 10 δx 2 + 5 εx + ζ ( γ, δ, ε, ζ ) identified with f ( x ) = The polynomial f ( x ) is solvable (its resolvent R f ( x ) has t as a root). inverse map exists, rational function need R f ( x ) to have rational root t difficulty: if quintic factors, t may be complex or irrational real so don’t quite parametrize all solvable quintics 8

  9. Example 3 : Brioschi quintics [Elia] f ( x ) = x 5 − 10 zx 3 + 45 z 2 x − z 2 ( − z 5 + 128 z 6 ) x 6 + 400 z 6 x 5 + ( − 15 z 6 − 46080 z 7 ) x 4 R f ( x ) = +40000 z 7 x 3 + ( − 95 z 7 − 51840 z 8 ) x 2 +( z 7 + 1872 z 8 ) x − 25 z 8 If z is a non-zero integer, then f ( x ) is solvable in radicals. Example 4 : subject to certain explicitly defined polynomials not vanishing, if f 0 is an irreducible quintic such that R f 0 has a root t 0 ∈ R , then every Euclidean open neighborhood of f 0 contains a solvable quintic. 9

  10. Dickson’s Factorization Action of S 5 S 5 : symmetric group on 5 letters Action of S 5 on polynomials f ( x 1 , x 2 , x 3 , x 4 , x 5 ) ∈ Z [ x 1 , x 2 , x 3 , x 4 , x 5 ] σ ∈ S 5 σ · f = f ( x σ 1 , x σ 2 , x σ 3 , x σ 4 , x σ 5 ) Example f = x 1 x 2 − x 1 x 3 + x 2 x 3 − x 1 x 4 − x 2 x 4 + x 3 x 4 + x 1 x 5 − x 2 x 5 − x 3 x 5 + x 4 x 5 σ = (132) σ · f = x 3 x 1 − x 3 x 2 + x 1 x 2 − x 3 x 4 − x 1 x 4 + x 2 x 4 + x 3 x 5 − x 1 x 5 − x 2 x 5 + x 4 x 5 10

  11. Dickson’s Factorization The group F 20 S 5 : symmetric group on 5 letters F 20 : subgroup of S 5 generated by (12345) and (2354) � 6 S 5 = τ i F 20 i =1 τ 1 = (1) , τ 2 = (12) , τ 3 = (13) , τ 4 = (23) , τ 5 = (123) , τ 6 = (132) Theorem . Let f ( x ) ∈ Q [ x ] be an irreducible quintic. Then f ( x ) is solvable in radicals if and only if its Galois group is conjugate to a subgroup of F 20 . Problem: extend resolvent program to polynomials of higher degree. (What replaces F 20 ?) 11

  12. Dickson’s Factorization Malfatti’s resolvent Φ( x 1 , x 2 , x 3 , x 4 , x 5 ) = x 1 x 2 − x 1 x 3 + x 2 x 3 − x 1 x 4 − x 2 x 4 + x 3 x 4 + x 1 x 5 − x 2 x 5 − x 3 x 5 + x 4 x 5 = ( x 1 − x 5 )( x 2 − x 5 ) + ( x 2 − x 5 )( x 3 − x 5 ) + ( x 3 − x 5 )( x 4 − x 5 ) − ( x 2 − x 5 )( x 4 − x 5 ) − ( x 4 − x 5 )( x 1 − x 5 ) − ( x 1 − x 5 )( x 3 − x 5 ) Properties: (1) homogeneous of degree 2 in x 1 , x 2 , x 3 , x 4 , x 5 (2) for any β ∈ C , Φ( x 1 + β, x 2 + β, x 3 + β, x 4 + β, x 5 + β ) = Φ( x 1 , x 2 , x 3 , x 4 , x 5 ) (3) highest power to which any x i appears is 1 (4) (12345)Φ = Φ (2354)Φ = − Φ Note: Malfatti resolvent, put Φ 2 = Θ R ( x ) = ( x − Θ)( x − τ 2 Θ)( x − τ 3 Θ)( x − τ 4 Θ)( x − τ 5 Θ)( x − τ 6 Θ) polynomial in a � i s rational root if and only if f ( x ) solvable in radicals for resolvents of this form, lowest possible degree in Θ rediscovered by Jacobi (1835), Cayley (1861), Dummit (1991) 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend