the hardy littlewood maximal operator on graphs
play

The Hardy-Littlewood maximal operator on graphs Pedro Tradacete - PowerPoint PPT Presentation

The Hardy-Littlewood maximal operator on graphs Pedro Tradacete (UC3M) Joint work with J. Soria (UB) Congreso de J ovenes Investigadores RSME 7 - 11 September 2015, Murcia P . Tradacete (UC3M) HL operator on graphs Murcia 2015 1 / 11


  1. The Hardy-Littlewood maximal operator on graphs Pedro Tradacete (UC3M) Joint work with J. Soria (UB) Congreso de J´ ovenes Investigadores RSME 7 - 11 September 2015, Murcia P . Tradacete (UC3M) HL operator on graphs Murcia 2015 1 / 11

  2. Notation Let G = ( V , E ) simple, connected, and finite graph. Shortest path distance d G ( v , v ′ ) = min { k : ∃ ( v j ) k j = 0 , v 0 = v , v k = v ′ , ( v j − 1 , v j ) ∈ E ∀ j ≤ k } . B ( v , r ) ball of center v ∈ V and radius r ≥ 0. ( V , d G , | · | ) metric measure space. Given f : V → R let 1 � M G f ( v ) = sup | f ( w ) | . | B ( v , r ) | r ≥ 0 w ∈ B ( v , r ) (Centered) Hardy-Littlewood maximal function P . Tradacete (UC3M) HL operator on graphs Murcia 2015 2 / 11

  3. Theorem Let G 1 and G 2 be two graphs with V ( G 1 ) = V ( G 2 ) = { 1 , . . . , n } . The following are equivalent: (i) G 1 = G 2 . (ii) For every f : { 1 , . . . , n } → R , M G 1 f = M G 2 f. (iii) For every k ∈ V, M G 1 δ k = M G 2 δ k . In general, it is not true that if G 1 ⊂ G 2 (i.e., V ( G 1 ) = V ( G 2 ) and E ( G 1 ) ⊂ E ( G 2 ) ), then M G 2 f ≤ M G 1 f . For example, if V = { 1 , 2 , 3 , 4 } , G 1 is a linear tree with leafs 1 and 4, G 2 is the 4-cycle C 4 (with a clockwise orientation of V ), then G 1 ⊂ G 2 , but M G 2 δ 4 ( 1 ) = 1 / 3 > 1 / 4 = M G 1 δ 4 ( 1 ) . P . Tradacete (UC3M) HL operator on graphs Murcia 2015 3 / 11

  4. Lemma Let G be graph with n vertices, and T : ℓ p ( G ) → ℓ p ( G ) be a sublinear operator, with 0 < p ≤ 1 . Then, � T � p = max k ∈ V � T δ k � p . K 4 � M K 4 � 1 ∪ ∧ P 4 ⊂ D 4 ⊃ C 4 � M P 4 � 1 > � M D 4 � 1 = � M C 4 � 1 ∪ ∪ ∧ ∧ S 4 L 4 � M S 4 � 1 � M L 4 � 1 P . Tradacete (UC3M) HL operator on graphs Murcia 2015 4 / 11

  5. Proposition � 1 / p � 1 + n − 1 (i) If 0 < p ≤ 1 , then � M K n � p = . n p (ii) If 1 < p < ∞ , then 1 + n − 1 � 1 / p 1 + n − 1 � 1 / p � � ≤ � M K n � p ≤ i . e . � M K n � p ≈ 1 . n p n (iii) For n ≥ 3 , we have � M S n � 1 = n + 1 2 . (iv) For 1 < p < ∞ , then � 1 / p � 1 / p � 1 + n − 1 � n + 5 i . e . � M S n � p ≈ n 1 / p . ≤ � M S n � p ≤ , 2 p 2 (v) For n ≥ 2 we have � n 1 − p − 1  � 1 / p , 0 < p < 1 ,    1 − p � M L n � p ≈   log n , p = 1 .  P . Tradacete (UC3M) HL operator on graphs Murcia 2015 5 / 11

  6. Theorem Let G be a graph with n vertices and 0 < p ≤ 1 . Then, the following optimal estimates hold: 1 + n − 1 � 1 / p 1 + n − 1 � 1 / p � � ≤ � M G � p ≤ . n p 2 p Moreover, 1 + n − 1 � 1 / p � (i) � M G � p = if and only if G = K n ; n p 1 + n − 1 � 1 / p � (ii) � M G � p = if and only if G ∼ S n . 2 p P . Tradacete (UC3M) HL operator on graphs Murcia 2015 6 / 11

  7. Weak p -estimates � 1 / p = max j ∈ V j 1 / p f ∗ � � � f � p , ∞ := sup t � { j ∈ V : f j > t } j . t > 0 � M G f � p , ∞ � M G � p , ∞ = sup . � f � p f Theorem For 0 < p < ∞ , we have � n 1 / p − 1 , if 0 < p ≤ 1 , � M K n � p , ∞ = 1 , if p ≥ 1 . max { n 1 / p / 2 , 1 } ≤ � M S n � p , ∞ ≤ n 1 / p . (In particular, � M S n � p , ∞ ≈ n 1 / p , for every n ≥ 1 and 0 < p < ∞ ) P . Tradacete (UC3M) HL operator on graphs Murcia 2015 7 / 11

  8. Dilation index Definition Given a graph G we define its dilation index as � | B ( x , 3 r ) | � D ( G ) = max | B ( x , r ) | : x ∈ V , r ∈ N , r ≤ diam ( G ) . Example Complete graph: D ( K n ) = 1 . Star graph: D ( S n ) = n 2 . Linear tree: easy to check that D ( L n ) < 3 for all n ∈ N , and lim n →∞ D ( L n ) = 3. For small n : D ( L 3 ) = 3 / 2, D ( L 4 ) = 2, D ( L 5 ) = 2, D ( L 6 ) = 2, D ( L 7 ) = 7 / 3 . . . P . Tradacete (UC3M) HL operator on graphs Murcia 2015 8 / 11

  9. Overlapping index Definition Given a graph G we define its overlapping index as � O ( G ) = min r ∈ N : ∀{ B j } j ∈ J , B j a ball in G , ∃ I ⊂ J , � � � � B j = B i and χ B i ≤ r . j ∈ J i ∈ I i ∈ I Example O ( K n ) = 1 , ∀ n ∈ N ; O ( S n ) = n − 1 , ∀ n ≥ 2 ; � 1 � 1 n ≤ 2 , n ≤ 3 , O ( L n ) = O ( C n ) = 2 n ≥ 3 ; 2 n ≥ 4 . P . Tradacete (UC3M) HL operator on graphs Murcia 2015 9 / 11

  10. Theorem Given a graph G, we have � � � M G � 1 , ∞ ≤ min D ( G ) , O ( G ) . Proposition For the linear graph L n , we have that lim n →∞ � M L n � 1 , ∞ = 2 . Note lim n →∞ � M L n � 1 , ∞ = 2 = �M� 1 , ∞ , where M is the uncentered maximal function in R . Compare to the fact that for the centered Hardy-Littlewood maximal operator M in R and the discrete measures N � � � D = µ = δ a k : a k ∈ R , a k + 1 = a k + H , H fixed, N ∈ N , k = 1 � M µ � 1 , ∞ = 3 sup 2 . � µ � µ ∈D [M. T. Men´ arguez and F . Soria, 1992] P . Tradacete (UC3M) HL operator on graphs Murcia 2015 10 / 11

  11. Thank you for your attention. P . Tradacete (UC3M) HL operator on graphs Murcia 2015 11 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend