the geometric hopf invariant
play

THE GEOMETRIC HOPF INVARIANT Michael Crabb (Aberdeen) Andrew - PowerPoint PPT Presentation

1 THE GEOMETRIC HOPF INVARIANT Michael Crabb (Aberdeen) Andrew Ranicki (Edinburgh) G ottingen, 29th September, 2007 2 The algebraic theory of surgery The chain complex theory offers many advantages . . . a simple and satisfactory


  1. 1 THE GEOMETRIC HOPF INVARIANT Michael Crabb (Aberdeen) Andrew Ranicki (Edinburgh) G¨ ottingen, 29th September, 2007

  2. 2 The algebraic theory of surgery ◮ “The chain complex theory offers many advantages . . . a simple and satisfactory algebraic version of the whole setup. I hope it can be made to work.” C.T.C. Wall, Surgery on Compact Manifolds (1970) ◮ The chain complex theory developed in The algebraic theory of surgery (R., 1980) expressed surgery obstruction of a normal map ( f , b ) : M → X from an m -dimensional manifold M to an m -dimensional geometric Poincar´ e complex X as the cobordism class of a quadratic Poincar´ e complex ( C , ψ ) σ ∗ ( f , b ) = ( C , ψ ) ∈ L m ( Z [ π 1 ( X )]) with C a f.g. free Z [ π 1 ( X )]-module chain complex such that H ∗ ( C ) = K ∗ ( M ) = ker( � f ∗ : H ∗ ( � M ) → H ∗ ( � X )) and ψ : H ∗ ( C ) ∼ = H m −∗ ( C ) an algebraic Poincar´ e duality. ◮ Originally, it was necessary to make ( f , b ) highly-connected by preliminary surgeries below the middle dimension.

  3. 3 Advantages and a disadvantage ◮ The algebraic theory of surgery did indeed offer the advantages predicted by Wall in 1970. ◮ However, the identification σ ∗ ( f , b ) = ( C , ψ ) was not as nice as could have been wished for! ◮ The chain homotopy theoretic treatment of the Wall self-intersection function counting double points Z [ π 1 ( M )] µ ( g : S n � M 2 n ) ∈ { x − ( − ) n x − 1 | x ∈ π 1 ( M ) } was too indirect, making use of Wall’s result that for n � 3 µ ( g ) = 0 if and only if g is regular homotopic to an embedding – proved by the Whitney trick for removing double points. ◮ Need to count double points of immersions using π 1 ( M ) × Z 2 -equivariant homotopy theory, specifically an equivariant version of the geometric Hopf invariant.

  4. 4 Unstable vs. stable homotopy theory ◮ The stabilization map [Σ k X , Σ k Y ] = [ X , Ω ∞ Σ ∞ Y ] [ X , Y ] → { X ; Y } = lim − → k is in general not an isomorphism! ◮ Terminology: for any space X let X + = X ⊔ { + } (disjoint union) and X ∞ = X ∪ {∞} (one point compactification). ◮ Ω ∞ Σ ∞ Y / Y is filtered, with k th filtration quotient F k ( Y ) = E Σ + k ∧ Σ k ( ∧ k Y ) . ◮ The Thom space of a j -plane bundle R j → E ( ν ) → M is T ( ν ) = E ( ν ) ∞ , and F k ( T ( ν )) = T ( e k ( ν )) with � � R jk → E ( e k ( ν )) = E Σ k × Σ k E ( ν ) → E Σ k × Σ k M . k k ◮ For an immersion f : M m � N n with ν f : M → BO ( n − m ) and Umkehr map F : Σ ∞ N + → Σ ∞ T ( ν f ) the adjoint N + → Ω ∞ Σ ∞ T ( ν f ) sends k -tuple points of f to F k ( T ( ν f )).

  5. 5 The Hopf invariant (I.) ◮ (Hopf, 1931) Isomorphism H : π 3 ( S 2 ) ∼ = Z via linking numbers of S 1 ⊔ S 1 ֒ → S 3 . ◮ (Freudenthal, 1937) Suspension map for pointed space X E : π n ( X ) → π n +1 (Σ X ) ; ( f : S n → X ) �→ (Σ f : S n +1 → Σ X ) . angung ). If X is ( m − 1)-connected then E is an ( E for Einh¨ isomorphism for n � 2 m − 2 and surjective for n = 2 m − 1. ◮ (G.W.Whitehead, 1950) EHP exact sequence � π n ( X ) E � π n +1 (Σ X ) H � π n ( X ∧ X ) P � π n − 1 ( X ) � . . . . . . for any ( m − 1)-connected space X , with n � 3 m − 2. ◮ For X = S m , n = 2 m H = Hopf invariant : π 2 m +1 ( S m +1 ) → π 2 m ( S m ∧ S m ) = Z .

  6. 6 The quadratic construction ◮ Given an inner product space V let LV = V with Z 2 -action T : LV → LV ; v �→ − v with restriction T : S ( LV ) → S ( LV ). ◮ The quadratic construction on pointed space X is Q V ( X ) = S ( LV ) + ∧ Z 2 ( X ∧ X ) with T : X ∧ X → X ∧ X ; ( x , y ) �→ ( y , x ). The projection Q V ( X ) = S ( LV ) + ∧ ( X ∧ X ) → Q V ( X ) is a double cover away from the base point. ◮ Q R 0 ( X ) = { pt. } , Q R 1 ( X ) = X ∧ X . ◮ Q R k ( S 0 ) = S ( L R k ) + / Z 2 = ( RP k − 1 ) + . ◮ For V = R ∞ write Q ( X ) = Q R ∞ ( X ) = lim Q R k ( X ) . − → k

  7. 7 The Hopf invariant (II.) ◮ (James, 1955) Stable homotopy equivalence for connected X � ∞ ΩΣ X ≃ s ( X ∧ · · · ∧ X ) . k =1 ◮ (Snaith, 1974) Stable homotopy equivalence � ∞ E Σ + Ω ∞ Σ ∞ X ≃ s k ∧ Σ k ( X ∧ · · · ∧ X ) . k =1 for connected X . Group completion for disconnected X . ◮ For k = 2 a stable homotopy projection Ω ∞ Σ ∞ X → Q ( X ) = E Σ + 2 ∧ Σ 2 ( X ∧ X ) . However, until now it was only defined for connected X , and was not natural in X .

  8. 8 The stable Z 2 -equivariant homotopy groups ◮ Given pointed Z 2 -spaces X , Y let [ X , Y ] Z 2 be the set of Z 2 -equivariant homotopy classes of Z 2 -equivariant maps X → Y . ◮ The stable Z 2 -equivariant homotopy group is [Σ k , k X , Σ k , k Y ] Z 2 { X ; Y } Z 2 = lim − → k with T : Σ k , k X = S k ∧ S k ∧ X → Σ k , k X ; ( s , t , x ) �→ ( t , s , x ) , T : Σ k , k ( Y ∧ Y ) → Σ k , k ( Y ∧ Y ) ; ( s , t , y 1 , y 2 ) �→ ( t , s , y 2 , y 1 ) . ◮ Example By the Z 2 -equivariant Pontrjagin-Thom isomorphism { S 0 ; S 0 } Z 2 = the cobordism group of 0-dimensional framed Z 2 -manifolds (= finite Z 2 -sets). The decomposition of finite Z 2 -sets as fixed ∪ free determines � � | D Z 2 | , | D | − | D Z 2 | { S 0 ; S 0 } Z 2 ∼ = Z ⊕ Z ; D = D Z 2 ∪ ( D − D Z 2 ) �→ 2

  9. 9 The relative difference ◮ For any inner product space V there is a cofibration S 0 = { 0 } + → V ∞ → V ∞ / { 0 } + = Σ S ( V ) + with S ( V ) = { v ∈ V | � v � = 1 } and tu ∼ � V ∞ / { 0 } + ; ( t , u ) �→ [ t , u ] = = Σ S ( V ) + 1 − t . ◮ For maps p , q : V ∞ ∧ X → Y such that p (0 , x ) = q (0 , x ) ∈ Y ( x ∈ X ) define the relative difference map δ ( p , q ) : Σ S ( V ) + ∧ X → Y ; � p ([1 − 2 t , u ] , x ) if 0 � t � 1 / 2 ( t , u , x ) �→ q ([2 t − 1 , u ] , x ) if 1 / 2 � t � 1 . ◮ The homotopy class of δ ( p , q ) is the obstruction to the existence of a rel 0 ∞ ∧ X homotopy p ≃ q : V ∞ ∧ X → Y . Barratt-Puppe sequence · · · → [Σ S ( V ) + ∧ X , Y ] → [ V ∞ ∧ X , Y ] → [ X , Y ]

  10. 10 Z 2 -equivariant stable homotopy theory = fixed-point + fixed-point-free ◮ Theorem For any pointed spaces X , Y there is a split short exact sequence of abelian groups 1+ T � { X ; Y ∧ Y } Z 2 ρ � { X ; Y } → 0 0 → { X ; Q ( Y ) } with an S -duality isomorphism { X ; Q ( Y ) } ∼ [Σ S ( LV ) + ∧ V ∞ ∧ X , V ∞ ∧ LV ∞ ∧ ( Y ∧ Y )] Z 2 . lim = − → V , dim( V ) < ∞ ◮ ρ is given by the Z 2 -fixed points, split by σ : { X ; Y } → { X ; Y ∧ Y } Z 2 ; F �→ ∆ Y F . ◮ The injection 1 + T is induced by projection S ( L R ∞ ) + → 0 ∞ 1 + T : { X ; Q ( Y ) } = { X ; Q ( Y ) } Z 2 → { X ; Y ∧ Y } Z 2 split by δ : { X ; Y ∧ Y } Z 2 → { X ; Q ( Y ) } ; G �→ δ ( G , σρ ( G )) .

  11. 11 The geometric Hopf invariant h ( F ) (I.) ◮ Let X , Y be pointed spaces. The geometric Hopf invariant of a stable map F : Σ ∞ X → Σ ∞ Y is the stable map h ( F ) = δ (( F ∧ F )∆ X , ∆ Y F ) : Σ ∞ X → Σ ∞ Q ( Y ) . ◮ The injection 1 + T : { X ; Q ( Y ) } ֒ → { X ; Y ∧ Y } Z 2 sends the stable homotopy class of h ( F ) to the stable Z 2 -equivariant homotopy class of (1 + T ) h ( F ) = ∆ Y F − ( F ∧ F )∆ X : X → Y ∧ Y . ◮ The stable homotopy class of h ( F ) is the primary obstruction to the desuspension of F. ◮ Good naturality properties: if π is a group, X , Y are π -spaces and F is π -equivariant then h ( F ) is π -equivariant.

  12. 12 The geometric Hopf invariant h ( F ) (II.) ◮ Proposition The geometric Hopf invariant of F : Σ ∞ X → Σ ∞ Y h ( F ) ∈ ker( ρ : { X ; Y ∧ Y } Z 2 → { X ; Y } ) = im(1 + T : { X ; Q ( Y ) } ֒ → { X ; Y ∧ Y } Z 2 ) has the following properties: (i) If F ∈ im([ X , Y ] → { X ; Y } ) then h ( F ) = 0. (ii) For F 1 , F 2 : Σ ∞ X → Σ ∞ Y h ( F 1 + F 2 ) = h ( F 1 ) + h ( F 2 ) + ( F 1 ∧ F 2 )∆ X . (iii) For F : Σ ∞ X → Σ ∞ Y , G : Σ ∞ Y → Σ ∞ Z h ( GF ) = ( G ∧ G ) h ( F ) + h ( G ) F . (iv) If X = S 2 m , Y = S m , F : S 2 m + ∞ → S m + ∞ then h ( F ) = mod 2 Hopf invariant ( F ) ∈ { S 2 m ; Q ( S m ) } = Z 2 . (v) h : { X ; Y } → { X ; Q ( Y ) } ; F �→ h ( F ) is the James-Hopf double point map.

  13. 13 The Main Theorem ◮ Theorem The quadratic Poincar´ e complex ( C , ψ ) of an m -dimensional normal map ( f , b ) : M → X has ψ = ( e ⊗ e )( h ( F ) /π )[ X ] ∈ Q m ( C ) = H m ( C ( S ( L R ∞ )) ⊗ Z [ Z 2 ] ( C ⊗ Z [ π ] C )) with π = π 1 ( X ), [ X ] ∈ H m ( X ) the fundamental class, and h ( F ) /π : H m ( X ) → H m ( S ( L R ∞ ) × Z 2 ( � M × π � M )) the π -equivariant geometric Hopf invariant. Here X + → Σ ∞ � M + is the stable π -equivariant map F : Σ ∞ � inducing the Umkehr f ! : C ( � X ) → C ( � M ) determined by b : ν M → ν X , and e = inclusion : C ( � M ) → C = C ( f ! ). ◮ The m -dimensional quadratic Poincar´ e complex ( C , ψ ) has a direct connection with double points of immersions S n � M m , particularly for m = 2 n .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend