the electron capture in 163 ho experiment echo
play

The Electron Capture in 163 Ho experiment ECHo Loredana Gastaldo - PowerPoint PPT Presentation

The Electron Capture in 163 Ho experiment ECHo Loredana Gastaldo for the ECHo Collaboration Kirchhoff Institute for Physics, Heidelberg University 163 Ho electron capture decay e 163 163 * Ho Dy 67 66 e e


  1. The Electron Capture in 163 Ho experiment ‐ ECHo Loredana Gastaldo for the ECHo Collaboration Kirchhoff Institute for Physics, Heidelberg University

  2. 163 Ho electron capture decay  e    163 163 * Ho Dy 67 66 e e ‐   163 * 163 Dy Dy E 66 66 C e ‐ n p p p n p n  1/2  4570 years (2*10 11 atoms for 1 Bq) • e ‐ e ‐ e ‐ n p e ‐ n n p Q EC = (2.833  0.030 stat  0.015 syst ) keV p n • e ‐ e ‐ e ‐ S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501 1

  3. 163 Ho electron capture decay  e    163 163 * Ho Dy 67 66 e e ‐   163 * 163 Dy Dy E 66 66 C e ‐ n p p p n p n  1/2  4570 years (2*10 11 atoms for 1 Bq) • e ‐ e ‐ e ‐ n p e ‐ n n p Q EC = (2.833  0.030 stat  0.015 syst ) keV p n • e ‐ e ‐ e ‐ S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501   163 163 Q m ( Ho ) m ( Dy ) EC AME 2017 Penning Trap Mass Spectroscopy @TRIGA TRAP (Uni‐Mainz) (  ) @SHIPTRAP (GSI – Darmstadt) (  ) AME 2012 Future goal: 1 eV precision: PENTATRAP @MPIK, Heidelberg (*) (  ) F. Schneider et al., Eur. Phys. J. A 51 (2015) 89 (  ) S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501 (*) J. Repp et al., Appl. Phys. B 107 (2012) 983 1 (*) C. Roux et al., Appl. Phys. B 107 (2012) 997

  4. 163 Ho electron capture decay  e    163 163 * Ho Dy 67 66 e e ‐   163 * 163 Dy Dy E 66 66 C e ‐ n p p p n p n  1/2  4570 years (2*10 11 atoms for 1 Bq) • e ‐ e ‐ e ‐ n p e ‐ n n p Q EC = (2.833  0.030 stat  0.015 syst ) keV p n • e ‐ e ‐ e ‐ S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501 OII OI NI MI NII MII A. De Rujula and M. Lusignoli, 1 Phys. Lett. 118B (1982)

  5. Requirements for  mass determination Statistics in the end point region • N ev > 10 14 → A ≈ 1 MBq f pu = 10 ‐6  E FWHM = 2 eV Unresolved pile‐up ( f pu ~ a   r ) • f pu < 10 ‐5  r < 1 µs  a ~ 10 Bq • 10 5 pixels • Precision characterization of the endpoint region  E FWHM < 3 eV • Background level < 10 ‐6 events/eV/det/day • 2

  6. Sensitivity of 163 Ho based experiments ‐ ECHo ECHo‐1k – revised (2015 – 2018+) ECHo‐100k (2018 – 2021+) A  300 Bq A  100 kBq t = 1 y t = 3 y m (  e ) < 10 eV 90% C.L. m (  e ) < 1.5 eV 90% C.L. Activity per pixel: 1 ‐ 5 Bq Activity per pixel: 10 Bq Number of detectors: 60 ‐ 100 Number of detectors: 12000 Readout: parallel two stage SQUID Readout: microwave SQUID multiplexing Supported by DFG Research Unit FOR 2022/1 Supported by DFG Research Unit FOR 2022/2 3

  7. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho 4

  8. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho E A.Fleischmann, C. Enss and G. M. Seidel, Δ T  Topics in Applied Physics 99 (2005) 63 C A.Fleischmann et al., tot AIP Conf. Proc. 1185 (2009) 571 L. Gastaldo et al., T Nucl. Inst. Meth. A , 711 (2013) 1 C  T τ = tot G t 5

  9. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho E A.Fleischmann, C. Enss and G. M. Seidel, Δ T  Topics in Applied Physics 99 (2005) 63 C A.Fleischmann et al., tot AIP Conf. Proc. 1185 (2009) 571 L. Gastaldo et al., T Nucl. Inst. Meth. A , 711 (2013) 1 C  T τ = tot 200 µm G t 5

  10. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho E Δ T  C tot T C  T τ = tot G t Operated at T  20 mK 5

  11. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho E Fast risetime Δ T   Reduction un‐resolved pile‐up C tot Extremely good energy resolution  Reduced smearing in the end point region T C  T τ = tot G Excellent linearity  precise definition of the energy scale t 55 Fe 55 Fe, K  55 Fe 5

  12. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho Required activity in the detectors for sub‐eV  >10 6 Bq  >10 17 atoms  >27 µg Neutron irradiation Excellent chemical separation (n,  )‐reaction on 162 Er 95% efficiency  2  10 18 atoms (10 MBq) Available 163 Ho H. Dorrer et al, Radiochim. Acta 106(7) (2018) 535–48 6

  13. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho Required activity in the detectors for sub‐eV  >10 6 Bq  >10 17 atoms  >27 µg Neutron irradiation Excellent chemical separation (n,  )‐reaction on 162 Er 95% efficiency  2  10 18 atoms (10 MBq) available 163 Ho Mass separation and ion implantation in MMC pixels RISIKO @ Institute of Physics, Mainz University ‐ Resonant laser ion source efficiency (69 ± 5 stat ± 4 syst )% ‐ Reduction of 166m Ho in MMC 166m Ho/ 163 Ho < 4(2)10 ‐9 F. Schneider et al ., NIM B 376 (2016) 388 T. Kieck et al., Rev. Sci. Inst. 90 (2019) 053304 ‐ Optimization of beam focalization T. Kieck et al., NIM A 945 (2019) 162602 H. Dorrer et al, Radiochim. Acta 106(7) (2018) 535–48 6

  14. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho Required activity in the detectors for sub‐eV  >10 6 Bq  >10 17 atoms  >27 µg Neutron irradiation Excellent chemical separation (n,  )‐reaction on 162 Er 95% efficiency  2  10 18 atoms (10 MBq) available 163 Ho Mass separation and ion implantation in MMC pixels RISIKO @ Institute of Physics, Mainz University ‐ Resonant laser ion source efficiency (69 ± 5 stat ± 4 syst )% ‐ Reduction of 166m Ho in MMC 166m Ho/ 163 Ho < 4(2)10 ‐9 F. Schneider et al ., NIM B 376 (2016) 388 T. Kieck et al., Rev. Sci. Inst. 90 (2019) 053304 ‐ Optimization of beam focalization T. Kieck et al., NIM A 945 (2019) 162602 H. Dorrer et al, Radiochim. Acta 106(7) (2018) 535–48 6

  15. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho Required activity in the detectors for sub‐eV  >10 6 Bq  >10 17 atoms  >27 µg Neutron irradiation Excellent chemical separation (n,  )‐reaction on 162 Er 95% efficiency  2  10 18 atoms (10 MBq) available 163 Ho Mass separation and ion implantation in MMC pixels RISIKO @ Institute of Physics, Mainz University ‐ Resonant laser ion source efficiency (69 ± 5 stat ± 4 syst )% ‐ Reduction of 166m Ho in MMC 166m Ho/ 163 Ho < 4(2)10 ‐9 F. Schneider et al ., NIM B 376 (2016) 388 T. Kieck et al., Rev. Sci. Inst. 90 (2019) 053304 ‐ Optimization of beam focalization T. Kieck et al., NIM A 945 (2019) 162602 H. Dorrer et al, Radiochim. Acta 106(7) (2018) 535–48 6

  16. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho 250 µm maXs‐20 16 pixels 4 pixels used for low background experiment 7

  17. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho 5 mm 250 µm maXs‐20 16 pixels ECHo‐1k 32 channels + 4 for diagnostics 4 pixels used for low background experiment present working horse 7

  18. Experimental aspects ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed 163 Ho 5 mm 250 µm maXs‐20 16 pixels ECHo‐1k 32 channels + 4 for diagnostics 4 pixels used for low background experiment present working horse 5 mm 7 ECHo‐100k 32 channels ‐ in fabrication

  19. 163 Ho theory A large number of theoretical works to interpret the 163 Ho spectral shape • A. Faessler et al., J. Phys. G 42 (2015) 015108 • R. G. H. Robertson, Phys. Rev. C 91 , 035504 (2015) • A. Faessler and F. Simkovic, Phys. Rev. C 91, 045505 (2015) • A. Faessler et al., Phys. Rev. C 91 , 064302 (2015) • A. Faessler et al., Phys. Rev. C 95 , (2017) 045502 • A. De Rujula and M. Lusignoli, JHEP 05 (2016) 015 P. C.‐O. Ranitzsch et al., 8 Phys. Rev. Lett. 119 (2017) 122501

  20. 163 Ho theory New approach Ab inito calculation of the 163 Ho electron capture spectrum Restricted to bound‐states only, i.e. the spectrum is given by a finite number of resonances  Include decay to the continuum states  Study the effect of metallic host 9 Brass et al., Phys. Rev. C 97 (2018) 054620

  21. Final analysis of the „Modane Data“ • Detector chip: maXs 20 design 4 pixels 4 days • Activity ≈ 0.2 Bq • 275 000 counts 10

  22. From signal to spectrum Fit all pulses with time template key parameters are extracted to perform cuts 11 C. Velte et al., submitted to EPJC

  23. From signal to spectrum Fit all pulses with time template key parameters are extracted to perform cuts 11 C. Velte et al., submitted to EPJC

  24. From signal to spectrum Fit all pulses with time template key parameters are extracted to perform cuts 11 C. Velte et al., submitted to EPJC

  25. From signal to spectrum 11 C. Velte et al., submitted to EPJC

  26. 163 Ho spectral shape analysis Energy resolution  E FWHM = 9.2 eV 12 C. Velte et al., submitted to EPJC

  27. 163 Ho spectral shape analysis Two background events: Background level @ 3.742 keV b < 1.6  10 ‐4 events/eV/pixel/day @ 6.250 keV 12 C. Velte et al., submitted to EPJC

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend