the dwr method for numerical simulations related to
play

The DWR method for numerical simulations related to nuclear waste - PowerPoint PPT Presentation

The DWR method for numerical simulations related to nuclear waste disposals Roland Becker Laboratoire de Math matiques Appliqu es Universit de Pau et de Pays de l Adour joint work with Malte Braack ( Universit t Kiel ) , Dominik


  1. The DWR method for numerical simulations related to nuclear waste disposals Roland Becker Laboratoire de Math é matiques Appliqu é es Universit é de Pau et de Pays de l ’ Adour joint work with Malte Braack ( Universit ä t Kiel ) , Dominik Meidner ( Universit ä t Heidelberg ) , Boris V exler ( RICAM Linz ) The couplex 1 - benchmark 1. The DWR - method 2. Time - dependent problems 3. Inverse problems 4. Convergence of adaptive methods 5.

  2. 1. The couplex 1 - benchmark ✤ benchmark de fi nition ✤ our tool: Gascoigne ✤ some thoughts about adaptivity

  3. benchmark de fi nition: couplex 1 ( il manque encore un facteur 3 ) R i ω ( ∂ C i ∂ t + λ i C i ) − ∇ · ( D i ∇ C i ) + u · ∇ C i = f i u = − K ∇ H ∇ · ( K ∇ H ) = 0 + boundary conditions... - linear problem - tremenduous scales - long - time integration - rection - di ff usion - advection with changing regimes

  4. weak formulation Find ( C , H ) in ( C 0 , H 0 )+ V × W such that: a ( C , φ )+ b ( C , H , φ )= l ( φ ) ∀ φ ∈ V d ( H , ψ )= 0 ∀ ψ ∈ W a ( C , φ ) : = � ( C t + λ C ) , φ � + � K ∇ C , ∇φ � b ( C , H , φ ) : = −� K ∇ H · ∇ C , ∇φ � d ( H , ψ ) : = � K ∇ H , ∇ψ � u = ( C , H ) , v = ( φ , ψ ) , X = V × W u ∈ u 0 + X 0 : A ( u , v ) = F ( v ) ∀ v ∈ X

  5. http://www.numerik.uni-kiel.de/~mabr/gascoigne/index.html ✤ adaptive mesh re fi nement ✤ quad ( hex ) - meshes with hanging nodes ✤ Newton, multigrid ✤ fl exibility / modelling ✤ discretization: Q1, Q2 with stabilization

  6. ✤ local re fi nement with hanging nodes ✤ multigrid ✤ LPS - local projection stabilization ✦ similar to the schemes of Guermond, Codina, Burman,... [1] R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes equations based on local pro jections. Calcolo, 38(4):173–199, 2001.

  7. starting mesh which one to chose ? hydrodynamic load H

  8. adaptive strategy I What quantity ( ies ) to compute ? 1.6 Output requirements The following output quantities are expected from the simulations(both tables and graphical representations): • Contour levels of C i at times 200, 10110, 50110, 10 6 , 10 7 years (the following level values should be used: 10 − 12 , 10 − 10 , 10 − 8 , 10 − 6 , 10 − 4 ); • Pressure field (10 values uniformly distributed between 180 and 340 ; • Darcy velocity field, along the 3 vertical lines given by x = 50 , x = 12500 , x = 20000 , using 100 points along each line; • Places where the Darcy velocity is zero; • Cumulative total flux through the top and the bottom clay layer boundaries, as a function of time; • Cumulative total fluxes through the left boundaries of the dogger and limestone layers; • The discretization grid of the domains and the time stepping used in the simulations should also be given. J ( t )

  9. Γ K ∂ C ( t ) Z J ( t )= ∂ n ds ∂Ω zK ∂ C ( t ) Z = ( z | ∂Ω \ Γ = 0 ) ∂ n ds Z = Ω K ∇ C · ∇ zdx . relates the functional to the operator ! ...

  10. stationary problem ✤ suppose we are interested in mean total fl ux ✤ equations are linear, stationary coe ffi cients ‣ time - derivative drop out Z T J : = 1 0 J ( t ) dt = J ( C ) T Z T C : = 1 0 C ( t ) dt T Find ( C , H ) in ( C 0 , H 0 )+ V × W such that: a ( C , φ )+ b ( C , H , φ )= l ( φ ) ∀ φ ∈ V d ( H , ψ )= 0 ∀ ψ ∈ W

  11. stationary problem ✤ simplify notation: drop overline J ( u ) = A ′ ( u )( u , z ) ≈ F ( z ) − A ( u )( z ) z = ( D , G ) z ∈ z 0 + X a ( φ , D )+ b C ( φ , H , D ) = 0 , A ′ ( u )( v , z ) = 0 ∀ v ∈ X . b H ( C , ψ , D )+ d ( ψ , G ) = 0 . influence sur G

  12. time-averaged solution dual concentration dual pressure

  13. sequence of meshes time - averaged pb

  14. back to the full problem ✤ static adapted meshes ✤ compute dynamic problem on the meshes as above... ✤ what can be said ? how to improve ? ✤ dynamic meshes ✤ needs space - time (fi nite element ) discretization ✤ H needs to be recomputed ✤ adjoint problem is backward in time !!

  15. 2. The DWR - method ✤ Task: estimate the ( discretization ) error with respect to a given quantity ✤ Task: automatically construct e ffi cient meshes to compute this quantity idea (1): the quantity is a functional on the solution space

  16. u ∈ V : u h ∈ V h : A ( u , v ) = F ( v ) A ( u h , v ) = F ( v ) ∀ v ∈ V ∀ v ∈ V h suppose linear... ( G ∈ V ∗ ) G ( u ) − G ( u h ) estimate idea ( 2 ) : represent the functional by duality ( c.f. Aubin - Nitsche, Lagrange,... ) z ∈ V : A ( v , z ) = G ( v ) ∀ v ∈ V G ( u ) − G ( u h ) = A ( u − u h , z ) = A ( u − u h , z − z h )

  17. error estimation ✤ many standard techniques can be used ✤ residual estimators ✤ hierarchical estimators ✤ recovery ✤ our proposal: use hierarchy ✤ I patchwise higher order interpolation ( B/R,... ) ✤ II compute the fi ner solution ( s ) G ( u ) − G ( u h ) ≈ G ( u h / 2 ) − G ( u h ) = A ( u h / 2 − u h , z h / 2 − z h )

  18. mesh adaptation ✤ needs to capture in fl uence of local residuals on quantity of interest ✤ error density Z G ( u ) − G ( u h ) = Ω η ( x ) dx

  19. example − ∆ u = f in Ω , u = 0 on ∂ Ω . model problem: J ( u ) = ∂u ∂x ( x 0 ) − ∆ z = J ε in Ω , dual problem: z = 0 on ∂ Ω .

  20. J ( u ) − J ( u h ) = ( ∇ ( u − u h ) , ∇ z ) = ( ∇ ( u − u h ) , ∇ z − v h ) = . . . � (∆ u h + f, z − v h ) K + K 1 behaves like r − 3 � 2([ ∂ n u h ] , z − v h ) ∂K ≤ K � ρ K ω K K ∈T h ω K = � z − v h � K ρ K = max( � f + ∆ u h � K , h − 1 / 2 � [ ∂ n u h ] � ∂K ) K

  21. DWR=dual weighted residual z behaves like second - order !! for comparison: energy estimator

  22. a general approach J ( u ) − J ( u h ) = 1 2 L � ( u h , z h )( u − φ h , z − ψ h ) + R, L ( u, z ) = J ( u ) + f ( z ) − a ( u )( z ) . � ρ ( u h )( ψ ) := f ( ψ ) − a ( u h )( ψ ) ρ ∗ ( z h )( φ ) := J � ( u h )( φ ) − a � ( u h )( φ, z h ) 1 + 1 2 ρ ∗ ( z h )( u − φ h ) J ( u ) − J ( u h ) = 2 ρ ( u h )( z − ψ h ) + R. � �� � � �� � primal dual [1] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In e. a. H. G. Bock, editor, ENUMATH ’ 97. World Sci. Publ., Singapore, 1995. [2] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996. [3] R. Becker and R. Rannacher. An optimal control approach to a-posteriori error estimation. In A. Iserles, editor, Acta Numerica 2001, pages 1–102. Cambridege University Press, 2001.

  23. pour Couplex J ( u ) − J ( u h ) = 1 2 ρ ( u h )( z − ψ h )+ 1 2 ρ ∗ ( u h , z h )( u − φ h ) ✤ no linearization error ✤ approximation of weights

  24. algorithm ✤ standard adaptive algorithm: SOLVE - ESTIMATE - MARK - REFINE V h ≈ Q 1 W h ≈ Q 2 h 2 h ✤ patched meshes I h : V h → W h natural ✤ approximation of weights ✤ ActaNumerica z − ψ h ≈ I h z h − z h ✤ gendarmes do the mesh refinement on 2 h z − ψ 2 h ≈ z h − i 2 h z h

  25. 3. Time - dependent problems with D. Meidner, M. Schmich, B. Vexler ✤ need all the data in space and time ✤ even for evaluation of estimator ✤ known problem in optimal control ✤ windowing/checkpointing for storage reduction ✤ generalization of DWR to time - dependent problems

  26. storage reduction ✤ divide and conquer: replace storage by computation ✤ can be done optimally up to logs ✤ see Griewank/W alther for AD ✤ for optimization of parabolic equations [1] R. Becker, D. Meidner, and B. Vexler. Efficient numerical solution of parabolic optimization problems by finite element methods. Technical report, UPPA, 2005.

  27. DWR for parabolic problems [1] M. Schmich and B. Vexler. Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. Technical report, RICAM, 2006. ✤ variational framework: ✤ space - time fi nite elements v v i (1) i (2) k v 2 k v ✤ requires special care ! t m − 1 t m t m +1 t m − 1 t m t m +1 (a) Piecewise linear interpolation (b) Piecewise quadratic interpolation ✤ use ‘ patched time - steps ’ Fig. 4.1: Interpolation operators ✤ we need to distinguish between space and time

  28. an example: reaction - di ff usion ∂ t θ − ∆ θ = ω ( θ , Y ) in Ω × I, ∂ t Y − 1 Le ∆ Y = − ω ( θ , Y ) in Ω × I, � compute: � 60 1 � � J ( u ) = ω ( θ , Y ) dx dt 60 | Ω | 0 Ω Fig. 5.4: Example 1: Reaction rate ω at t = 1 . 0, 20 . 0, 40 . 0, 60 . 0

  29. uniform local equi. fixed 0.1 local equi. | J ( u ) − J ( u kh ) | | J ( u ) | 0.01 Fig. 5.5: Example 1: Corresponding meshes at t = 1 . 0, 20 . 0, 40 . 0, 60 . 0 1e+06 1e+07 1e+08 1e+09 M � N m m =0

  30. 4. Inverse problems ✤ an example problem ✤ a systematic approach ✤ numerical sensitivities

  31. an example problem Find q ∈ R ω u dx − ¯ 1 � C | 2 2 | → inf , ω > 0 − Ω in Ω = (0 , 1) 2 , − ∆ u = qf u = 0 f > 0 on ∂ Ω , objective: compute q !

  32. solution operator: S : Q → V q �→ u u = S ( q ) = qu 1 , − ∆ u 1 = f in Ω with u 1 = 0 on ∂ Ω . 1 q = ¯ µ := Cµ, ω u 1 dx. � optimal solution: Ω 1 q h = ¯ µ h := Cµ h , ω u 1 h dx, discrete solution: � Ω where u 1 h ∈ V h Ritz projection:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend