the direct stiffness method part i
play

The Direct Stiffness Method Part I IFEM Ch 2 Slide 1 - PDF document

Introduction to FEM The Direct Stiffness Method Part I IFEM Ch 2 Slide 1 Introduction to FEM The Direct Stiffness Method (DSM) Importance: DSM is used by all major commercial FEM codes A democratic method, works the same no matter what


  1. Introduction to FEM The Direct Stiffness Method Part I IFEM Ch 2 – Slide 1

  2. Introduction to FEM The Direct Stiffness Method (DSM) Importance: DSM is used by all major commercial FEM codes A democratic method, works the same no matter what the element: Bar (truss member) element, 2 nodes, 4 DOFs Tricubic brick element, 64 nodes, 192 DOFs Obvious decision: use the truss to teach the DSM IFEM Ch 2 – Slide 2

  3. Introduction to FEM Model Based Simulation (a simplification of diagrams of Chapter 1) IDEALIZATION DISCRETIZATION SOLUTION FEM Discrete Discrete Physical Mathematical solution model system model Solution error Discretization + solution error Modeling + discretization + solution error VERIFICATION & VALIDATION IFEM Ch 2 – Slide 3

  4. Introduction to FEM The Direct Stiffness Method (DSM) Steps Starting with: Idealization  Disconnection Breakdown  Localization (Chapter 2) Member (Element) Formation   Globalization Assembly &  Merge Solution Application of BCs (Chapter 3) Solution  Recovery of Derived Quantities IFEM Ch 2 – Slide 4

  5. Introduction to FEM A Physical Plane Truss member support joint Too complicated to do by hand. We will use a simpler one to illustrate DSM steps IFEM Ch 2 – Slide 5

  6. Introduction to FEM The Example Truss: Physical Model (Loads not shown) IFEM Ch 2 – Slide 6

  7. Introduction to FEM The Example Truss - FEM Model: Nodes, Elements and DOFs f , u y 3 y 3 f , u x 3 x 3 3 √ (3) L = 10 2 (2) √ = 10 L (3) (3) E A = 200 2 (2) (2) E A = 50 (3) (2) y f , u f , u x (1) x 1 x 1 x 2 x 2 2 1 (1) L = 10 f , u f , u y 1 y 1 y 2 y 2 (1) (1) E A = 100 IFEM Ch 2 – Slide 7

  8. Introduction to FEM The Example Truss - FEM Model BCs: Applied Loads and Supports Saved for Last f y 3 = 1 3 f x 3 = 2 y x 1 2 �� �� �� �� �� �� IFEM Ch 2 – Slide 8

  9. Introduction to FEM Master (Global) Stiffness Equations     f x 1 u x 1 f y 1 u y 1         f x 2 u x 2     f = u =     f y 2 u y 2         f x 3 u x 3     f y 3 u y 3 Linear structure:       f x 1 K x 1 x 1 K x 1 y 1 K x 1 x 2 K x 1 y 2 K x 1 x 3 K x 1 y 3 u x 1 f y 1 K y 1 x 1 K y 1 y 1 K y 1 x 2 K y 1 y 2 K y 1 x 3 K y 1 y 3 u y 1             f x 2 K x 2 x 1 K x 2 y 1 K x 2 x 2 K x 2 y 2 K x 2 x 3 K x 2 y 3 u x 2       =       f y 2 K y 2 x 1 K y 2 y 1 K y 2 x 2 K y 2 y 2 K y 2 x 3 K y 2 y 3 u y 2             f x 3 K x 3 x 1 K x 3 y 1 K x 3 x 2 K x 3 y 2 K x 3 x 3 K x 3 y 3 u x 3       f y 3 K y 3 x 1 K y 3 y 1 K y 3 x 2 K y 3 y 2 K y 3 x 3 K y 3 y 3 u y 3 Nodal Master stiffness matrix Nodal forces displacements f = K u or IFEM Ch 2 – Slide 9

  10. Introduction to FEM Member (Element) Stiffness Equations _ ¯ f = K ¯ u ¯ ¯ ¯ ¯ K xixi K xiyi K xix j K xiyj ¯   f xi u xi ¯     ¯ ¯ ¯ ¯ ¯ K yixi K yiyi K yix j K yiyj f yi u yi ¯    =       ¯ ¯ ¯ ¯ ¯ f x j u x j ¯ K x jxi K x jyi K x jx j K x jyj      ¯ f yj u yj ¯ ¯ ¯ ¯ ¯ K yjxi K yjyi K yjx j K yjyj IFEM Ch 2 – Slide 10

  11. Introduction to FEM First Two Breakdown Steps: Disconnection and Localization 3 _ (3) _ (3) x y _ (2) x (3) (2) _ (2) y y _ (1) y _ (1) x x 1 2 (1) These steps are conceptual (not actually programmed) IFEM Ch 2 – Slide 11

  12. Introduction to FEM The 2-Node Truss (Bar) Element _ _ _ _ f , u _ f , u yi yi yj yj y _ _ _ _ _ f , u x f , u (e) xj xj xi xi j i Equivalent k = EA / L s spring stiffness − F F L d IFEM Ch 2 – Slide 12

  13. Introduction to FEM Truss (Bar) Element Formulation by Mechanics of Materials (MoM) F = k s d = E A F = ¯ f x j = − ¯ , f xi , d = ¯ u x j − ¯ u xi L d Exercise 2.3 ¯ f xi 1 0 − 1 0 u xi ¯       ¯  = E A f yi 0 0 0 0 u yi Element stiffness ¯       equations in local ¯ f x j − 1 0 1 0 u x j ¯ L      coordinates ¯ f yj 0 0 0 0 u yj ¯ from which 1 0 − 1 0   Element stiffness K = E A 0 0 0 0   matrix in local − 1 0 1 0 L   coordinates 0 0 0 0 IFEM Ch 2 – Slide 13

  14. Introduction to FEM Where We Are So Far in the DSM we are done with this ...  Disconnection  Breakdown Localization (Chapter 2)  Member (Element) Formation we finish Chapter 2 with  Globalization Assembly & Merge  Solution Application of BCs (Chapter 3) Solution  Recovery of Derived Quantities IFEM Ch 2 – Slide 14

  15. Introduction to FEM Globalization: Displacement Transformation u yj u yj ¯ u x j ¯ y ¯ u x j x ¯ j y u yi u xi ¯ ϕ u yi ¯ x u xi i Node displacements transform as u xi = u xi c + u yi s , u yi = − u xi s + u yi c γ ¯ ¯ u x j = u x j c + u yj s , ¯ u yj = − u x j s + u yj c γ ¯ in which s = sin ϕ c = cos ϕ IFEM Ch 2 – Slide 15

  16. Introduction to FEM Displacement Transformation (cont'd) In matrix form u xi c s 0 0 u xi ¯       u yi ¯ − s c 0 0 u yi  =       0 0 u x j ¯ c s u x j      u yj ¯ 0 0 − s c u yj Note: global on RHS, local on LHS e γ = T e u e u γ or ¯ IFEM Ch 2 – Slide 16

  17. Introduction to FEM Globalization: Force Transformation f yj ¯ f yj ¯ f x j f x j j y f yi ¯ f yi ¯ ϕ f xi x f xi i Node forces transform as ¯ f xi   f xi c − s 0 0     Note: ¯ f yi f yi s c 0 0    =     global on LHS,   ¯ f x j 0 0 c − s f x j      local on RHS ¯ f yj 0 0 s c f yj f e = ( T e ) T ¯ e f IFEM Ch 2 – Slide 17

  18. Introduction to FEM Globalization: Congruential Transformation of Element Stiffness Matrices f e e ¯ ¯ u e K = T e u e f e = T e T f e u e = ¯ ( ) ¯ Exercise 2.8 = T e T ¯ e T K e e ( ) K c 2 − c 2 sc − sc   K e = E e A e s 2 − s 2 sc − sc   − c 2 c 2 L e − sc sc   − s 2 s 2 − sc sc IFEM Ch 2 – Slide 18

  19. Introduction to FEM The Example Truss - FEM Model (Recalled for Convenience) f , u y 3 y 3 f , u x 3 x 3 3 √ (3) L = 10 2 (2) √ L = 10 (3) (3) E A = 200 2 (2) (2) E A = 50 (3) (2) Insert the geometric & y physical properties of this model into f , u x f , u (1) x 1 x 1 x 2 x 2 the globalized member 2 1 (1) stiffness equations L = 10 f , u f , u y 1 y 1 y 2 y 2 (1) (1) E A = 100 IFEM Ch 2 – Slide 19

  20. Introduction to FEM We Obtain the Globalized Element Stiffness Equations of the Example Truss (1) (1) f x 1 u x 1     1 0 − 1 0   (1) (1) f y 1 u y 1 0 0 0 0      = 10       (1) (1) − 1 0 1 0   f x 2 u x 2    (1) 0 0 0 0 (1) f y 2 u y 2 (2) (2) f x 2 u x 2     0 0 0 0   In the next class (2) (2) f y 2 u y 2 0 1 0 − 1 we will put these      = 5       (2) (2) 0 0 0 0 to good use   f x 3 u x 3    (2) 0 − 1 0 1 (2) f y 3 u y 3 (3) (3) f x 1 u x 1     0 . 5 0 . 5 − 0 . 5 − 0 . 5   (3) (3) f y 1 u y 1 0 . 5 0 . 5 − 0 . 5 − 0 . 5      = 20       (3) (3) − 0 . 5 − 0 . 5 0 . 5 0 . 5 f x 3   u x 3    (3) − 0 . 5 − 0 . 5 0 . 5 0 . 5 (3) f y 3 u y 3 IFEM Ch 2 – Slide 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend