the complexity of boundedness for gu a rded l ogi c s
play

The Complexity of Boundedness for Gu a rded L ogi c s Micha el B - PowerPoint PPT Presentation

The Complexity of Boundedness for Gu a rded L ogi c s Micha el B enedikt 1 , Ba lder ten Ca te 2 , T hom a s C ol c om b et 3 , M i c h a el Va nden B oom 1 1 U ni v ersit y of Ox ford 2 L ogi cB lo x a nd UC Sa nt a C r uz 3 U ni v ersit e Pa


  1. The Complexity of Boundedness for Gu a rded L ogi c s Micha el B enedikt 1 , Ba lder ten Ca te 2 , T hom a s C ol c om b et 3 , M i c h a el Va nden B oom 1 1 U ni v ersit y of Ox ford 2 L ogi cB lo x a nd UC Sa nt a C r uz 3 U ni v ersit ´ e Pa ris D iderot LICS 20 15 Ky oto, Ja p a n 1 / 12

  2. Least fixpoint Consider ψ ( y , Y ) positive in Y (of arity m = ∣ y ∣ ). For a ll str uc t u res A , the form u l a ψ ind uc es a monotone oper a tion P ( A m ) ⟶ P ( A m ) V ⟼ ψ A ( V ) ∶ = { a ∈ A m ∶ A , a , V ⊧ ψ } ⇒ there is a u niq u e le a st fi x point [ lfp Y , y . ψ ( y , Y )] A ∶ = ⋃ α ψ α A ψ 0 A ∶ = ∅ ψ α + 1 ∶ = ψ A ( ψ α A ) A ψ λ A ∶ = ⋃ ψ α A α < λ 2 / 1 2

  3. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll str uc t u res A , ψ n A = ψ n + 1 A ? (i.e. the le a st fi x point is a l way s re ac hed w ithin n iter a tions) 3 / 1 2

  4. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll stru c tures A , ψ n A = ψ n + 1 A ? (i.e. the le a st fixpoint is a lw a ys re ac hed within n iter a tions) ψ 1 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Rxz ∧ Yzy ) 3 / 1 2

  5. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll stru c tures A , ψ n A = ψ n + 1 A ? (i.e. the le a st fixpoint is a lw a ys re ac hed within n iter a tions) ψ 1 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Rxz ∧ Yzy ) un b ounded 3 / 1 2

  6. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll stru c tures A , ψ n A = ψ n + 1 A ? (i.e. the le a st fixpoint is a lw a ys re ac hed within n iter a tions) ψ 1 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Rxz ∧ Yzy ) un b ounded [ lfp Y , xy . ψ 1 ] ≡ tr a nsitive c losure of R 3 / 1 2

  7. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll stru c tures A , ψ n A = ψ n + 1 A ? (i.e. the le a st fixpoint is a lw a ys re ac hed within n iter a tions) ψ 1 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Rxz ∧ Yzy ) un b ounded [ lfp Y , xy . ψ 1 ] ≡ tr a nsitive c losure of R ψ 2 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Yzy ) 3 / 1 2

  8. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll stru c tures A , ψ n A = ψ n + 1 A ? (i.e. the le a st fixpoint is a lw a ys re ac hed within n iter a tions) ψ 1 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Rxz ∧ Yzy ) un b ounded [ lfp Y , xy . ψ 1 ] ≡ tr a nsitive c losure of R ψ 2 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Yzy ) [ lfp Y , xy . ψ 2 ]( xy ) ≡ Rxy ∨ ∃ z ( Rzy ) 3 / 1 2

  9. Boundedness prob lem B o u ndedness pro b lem for L I np u t: ψ ( y , Y ) ∈ L positive in Y Qu estion: is there n ∈ N s.t. for a ll stru c tures A , ψ n A = ψ n + 1 A ? (i.e. the le a st fixpoint is a lw a ys re ac hed within n iter a tions) ψ 1 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Rxz ∧ Yzy ) un b ounded [ lfp Y , xy . ψ 1 ] ≡ tr a nsitive c losure of R ψ 2 ( xy , Y ) ∶ = Rxy ∨ ∃ z ( Yzy ) b ounded [ lfp Y , xy . ψ 2 ]( xy ) ≡ Rxy ∨ ∃ z ( Rzy ) 3 / 1 2

  10. Some prior resu lts Boundedness is u nde c id ab le for bin a ry predi ca te in positive existenti a l FO (i.e. Da t a log) [H ille b r a nd, Ka nell a kis, Ma irson, Va rdi ’95] mon a di c predi ca te in existenti a l FO with inequ a lities [Ga ifm a n, Ma irson, Sa giv, Va rdi ’87 ] mon a di c predi ca te in FO 2 [K ol a itis, O tto ’98 ] 4 / 1 2

  11. Some prior resu lts Boundedness is u nde c id ab le for B o u ndedness is de c id ab le for bin a ry predi ca te in positive mon a di c predi ca te in positi v e existenti a l FO (i.e. Da t a log) e x istenti a l FO (i.e. mon a di c Da t a log) [H ille b r a nd, Ka nell a kis, Ma irson, Va rdi ’95] [C osm a d a kis, Ga ifm a n, Ka nell a kis, Va rdi ’88 ] 2EXPTIME mon a di c predi ca te in existenti a l FO with inequ a lities mon a di c predi ca te in mod a l logi c [Ga ifm a n, Ma irson, Sa giv, Va rdi ’87 ] [O tto ’99 ] EXPTIME mon a di c predi ca te in FO 2 predi ca tes in [K ol a itis, O tto ’98 ] “g u a rded logi c s” [B l u mens a th, O tto, W e y er ’14 ] [B´ a r ´ a n y , ten Ca te, O tto ’1 2] non-element a r y u pper b o u nd 4 / 1 2

  12. Some prior resu lts Boundedness is u nde c id ab le for B o u ndedness is de c id ab le for bin a ry predi ca te in positive mon a di c predi ca te in positi v e existenti a l FO (i.e. Da t a log) e x istenti a l FO (i.e. mon a di c Da t a log) [H ille b r a nd, Ka nell a kis, Ma irson, Va rdi ’95] [C osm a d a kis, Ga ifm a n, Ka nell a kis, Va rdi ’88 ] 2EXPTIME mon a di c predi ca te in existenti a l FO with inequ a lities mon a di c predi ca te in mod a l logi c [Ga ifm a n, Ma irson, Sa giv, Va rdi ’87 ] [O tto ’99 ] EXPTIME mon a di c predi ca te in FO 2 predi ca tes in [K ol a itis, O tto ’98 ] “g u a rded logi c s” [B l u mens a th, O tto, W e y er ’14 ] [B´ a r ´ a n y , ten Ca te, O tto ’1 2] non-element a r y u pper b o u nd o u r c ontri bu tion : element a r y u pper b o u nd (or b etter) 4 / 1 2

  13. Guarded logi c s constr a in qu a ntifi ca tion ∃ x ( G ( xy ) ∧ ψ ( xy )) ∀ x ( G ( xy ) → ψ ( xy )) GF [A ndr ´ ek a , v a n B enthem, FO N´ emeti ’95-’98] ML 5 / 1 2

  14. Guarded logi c s constr a in qu a ntifi ca tion ∃ x ( G ( xy ) ∧ ψ ( xy )) ∀ x ( G ( xy ) → ψ ( xy )) GF [A ndr ´ ek a , v a n B enthem, FO N´ emeti ’95-’98] ML constr a in UNF neg a tion ∃ x ( ψ ( xy )) ¬ ψ ( x ) [ ten Ca te, S egoufin ’11] 5 / 1 2

  15. Guarded logi c s constr a in qu a ntifi ca tion ∃ x ( G ( xy ) ∧ ψ ( xy )) ∀ x ( G ( xy ) → ψ ( xy )) GF [A ndr ´ ek a , v a n B enthem, FO N´ emeti ’95-’98] ML GNF c onstr a in UNF neg a tion ∃ x ( ψ ( xy )) G ( xy ) ∧ ¬ ψ ( xy ) [ ten Ca te, S egoufin ’11] [B´ a r ´ a ny, ten Ca te, S egoufin ’11] 5 / 1 2

  16. Guarded logi c s constr a in qu a ntifi ca tion ∃ x ( G ( xy ) ∧ ψ ( xy )) ∀ x ( G ( xy ) → ψ ( xy )) GFP FO [A ndr ´ ek a , v a n B enthem, + N´ emeti ’95-’98] L µ GNFP LFP c onstr a in UNFP neg a tion ∃ x ( ψ ( xy )) G ( xy ) ∧ ¬ ψ ( xy ) [ ten Ca te, S egoufin ’11] [B´ a r ´ a ny, ten Ca te, S egoufin ’11] 6 / 1 2

  17. Guarded logi c s Gu a rded logi c s a re expressive. F or inst a n c e, GNFP ca ptures: mu- ca l c ulus, even with bac kw a rds mod a lities; positi v e e x istenti a l FO (i.e. u nions of c onj u n c ti v e q u eries); des c ription logi c s in c l u ding ALC , ALCHIO , ELI ; mon a di c Da t a log. 7 / 12

  18. Guarded logi c s Gu a rded logi c s a re expressive. F or inst a n c e, GNFP ca ptures: mu- ca l c ulus, even with bac kw a rds mod a lities; positi v e e x istenti a l FO (i.e. u nions of c onj u n c ti v e q u eries); des c ription logi c s in c l u ding ALC , ALCHIO , ELI ; mon a di c Da t a log. G u a rded logi c s h a v e m a n y ni c e model theoreti c properties. GF , UNF , a nd GNF h a v e finite models. GFP , UNFP , a nd GNFP h a v e tree-like models (models of b o u nded tree- w idth). 7 / 12

  19. Guarded logi c s Gu a rded logi c s a re expressive. F or inst a n c e, GNFP ca ptures: mu- ca l c ulus, even with bac kw a rds mod a lities; positi v e e x istenti a l FO (i.e. u nions of c onj u n c ti v e q u eries); des c ription logi c s in c l u ding ALC , ALCHIO , ELI ; mon a di c Da t a log. G u a rded logi c s h a v e m a n y ni c e model theoreti c properties. GF , UNF , a nd GNF h a v e finite models. GFP , UNFP , a nd GNFP h a v e tree-like models (models of b o u nded tree- w idth). G u a rded logi c s h a v e ni c e c omp u t a tion a l properties. Sa tisfi ab ilit y is de c id ab le, a nd is 2 EXPTIME - c omplete (e v en EXPTIME - c omplete for fi x ed- w idth GFP ). 7 / 12

  20. Boundedness for guarded logi c s (We s a y ψ ( x ) is a ns w er-g ua rded if it is of the form G ( x ) ∧ ψ ′ ( x ) .) C oroll a ry to tree-like model property F or ψ in GFP or a nswer-gu a rded GNFP : ψ is b ounded over a ll stru c tures iff ψ is b ounded over tree-like stru c tures. 8 / 12

  21. Boundedness for guarded logi c s (We s a y ψ ( x ) is a ns w er-g ua rded if it is of the form G ( x ) ∧ ψ ′ ( x ) .) C oroll a ry to tree-like model property F or ψ in GFP or a nswer-gu a rded GNFP : ψ is b ounded over a ll stru c tures iff ψ is b ounded over tree-like stru c tures. ⇒ a men ab le to te c hniques using tree a utom a t a 8 / 12

  22. Boundedness for guarded logi c s (We s a y ψ ( x ) is a ns w er-g ua rded if it is of the form G ( x ) ∧ ψ ′ ( x ) .) C oroll a ry to tree-like model property F or ψ in GFP or a nswer-gu a rded GNFP : ψ is b ounded over a ll stru c tures iff ψ is b ounded over tree-like stru c tures. ⇒ a men ab le to te c hniques using tree a utom a t a L ogi c - a utom a t a c onne c tion utilized in B lumens a th et a l. ’14 b ut only yields non-element a ry c omplexity sin c e their proof goes vi a MSO . 8 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend