the c algebras of right angled artin tits monoids
play

The C -algebras of right-angled ArtinTits monoids Sren Eilers - PowerPoint PPT Presentation

c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n university of copenhagen The C -algebras of right-angled ArtinTits monoids Sren Eilers Centre for Symmetry and Deformation SYM lecture, March 19, 2014 Slide 1/15 u n i v e


  1. c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n university of copenhagen The C ∗ -algebras of right-angled Artin–Tits monoids Søren Eilers Centre for Symmetry and Deformation SYM lecture, March 19, 2014 Slide 1/15

  2. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The Elliott Program Goal Classify nuclear C ∗ -algebras by K -theoretical invariants. Slide 2/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  3. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The Elliott Program Goal Classify nuclear C ∗ -algebras by K -theoretical invariants. Progress bars Simple C ∗ -algebras 91% Purely infinite C ∗ -algebras 57% C ∗ -algebras with finitely many ideals 8% Slide 2/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  4. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Graphs We work with finite, simple, undirected graphs with no loops and call them Γ ′ = ( V ′ , E ′ ) . Γ = ( V , E ) , Definition For Γ = ( V , E ) we let Γ op = ( V , E op ) with E op = ( V × V ) \ ( E ∪ { ( v , v ) | v ∈ V } ) . We call Γ co-irreducible when Γ op is irreducible. Slide 3/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  5. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Graphs We work with finite, simple, undirected graphs with no loops and call them Γ ′ = ( V ′ , E ′ ) . Γ = ( V , E ) , Definition For Γ = ( V , E ) we let Γ op = ( V , E op ) with E op = ( V × V ) \ ( E ∪ { ( v , v ) | v ∈ V } ) . We call Γ co-irreducible when Γ op is irreducible, and for non-co-irreducible graphs consider co-irreducible components: Γ = Γ 1 ∗ Γ 2 ∗ · · · ∗ Γ n Slide 3/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  6. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Graphs (cont) Examples Slide 4/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  7. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Graphs (cont) Examples Definition (Euler characteristic) � ( − 1 ) | K | χ (Γ) = K Γ -simplex Slide 4/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  8. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n C ∗ -algebras of Artin-Tits monoids Definition (Crisp–Laca ’02) Let Γ be a graph. The C ∗ -algebra associated to the Artin-Tits monoid of Γ is � s v s w = s w s v ( v , w ) ∈ E � � � � C ∗ ( A + Γ ) = C ∗ s v s ∗ w = s ∗ { s v } v ∈ V w s v ( v , w ) ∈ E . � � s ∗ � v s w = δ v , w · 1 ( v , w ) / ∈ E � Slide 5/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  9. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n C ∗ -algebras of Artin-Tits monoids Definition (Crisp–Laca ’02) Let Γ be a graph. The C ∗ -algebra associated to the Artin-Tits monoid of Γ is � s v s w = s w s v ( v , w ) ∈ E � � � � C ∗ ( A + Γ ) = C ∗ s v s ∗ w = s ∗ { s v } v ∈ V w s v ( v , w ) ∈ E . � � s ∗ � v s w = δ v , w · 1 ( v , w ) / ∈ E � Observation C ∗ ( A + Γ ) = C ∗ ( A + Γ 1 ) ⊗ C ∗ ( A + Γ 2 ) ⊗ · · · ⊗ C ∗ ( A + Γ n ) when Γ = Γ 1 ∗ Γ 2 ∗ · · · ∗ Γ n . Slide 5/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  10. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n C ∗ -algebras of Artin-Tits monoids (cont.) Theorem (Cuntz–Echterhoff–Li) For any Γ , K ∗ ( C ∗ ( A + Γ )) = Z ⊕ 0 . Proof. The Baum–Connes conjecture holds for the group A Γ since it has the Haagerup property. Slide 6/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  11. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The co-irreducible case When Γ is co-irreducible with | Γ | > 1 and χ (Γ) � = 0, we have � K � C ∗ ( A + � O | χ (Γ) | + 1 � 0 0 Γ ) with K -theory χ (Γ) � Z � Z /χ (Γ) Z . Z Slide 7/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  12. � u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The co-irreducible case 2 When Γ is co-irreducible with | Γ | > 1 and χ (Γ) = 0, we have � K � C ∗ ( A + � O 1 � 0 0 Γ ) with K -theory 0 � Z � Z . Z Z Here O 1 is the unique unital Kirchberg algebra with the indicated K -theory and [ 1 ] = 1. Slide 8/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  13. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Classifying C ∗ -algebras with 1 ideal Progress bars Stable, purely infinite 98% [Rørdam ’94] Unital, purely infinite 98% [E–Restorff ’04] Stable, mixed AF/PI 41% [E–Restorff–Ruiz ’09] Unital, mixed AF/PI 7% Slide 9/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  14. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Theorem (E–Restorff–Ruiz) Unital C ∗ -algebras E of the form � E � Q � 0 � K 0 with Q a UCT Kirchberg algebra are classified by their six-term exact sequence when moreover • K ∗ ( Q ) finitely generated • K 1 ( Q ) free • rank K 1 ( Q ) ≤ rank K 0 ( Q ) Slide 10/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  15. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The co-irreducible case 3 Theorem (E–Li–Ruiz) When Γ , Γ ′ are co-irreducible with | Γ | , | Γ ′ | > 1 we have C ∗ ( A + Γ ) ≃ C ∗ ( A + ⇒ χ (Γ) = χ (Γ ′ ) Γ ′ ) ⇐ Slide 11/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  16. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Classifying C ∗ -algebras with finitely many ideals Progress bars Stable, purely infinite 32% Unital, purely infinite 15% [Arklint, Bentmann, Katsura, Köhler, Meyer, Nest, Restorff, Ruiz] Stable, mixed AF/PI 3% Unital, mixed AF/PI 1% Slide 12/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  17. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The general case Definition When Γ = Γ 1 ∗ Γ 2 ∗ · · · ∗ Γ n , define t (Γ) = # { i | | Γ i | = 1 } N k (Γ) = # { i | χ (Γ i ) = k } Slide 13/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  18. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n The general case Definition When Γ = Γ 1 ∗ Γ 2 ∗ · · · ∗ Γ n , define t (Γ) = # { i | | Γ i | = 1 } N k (Γ) = # { i | χ (Γ i ) = k } Theorem (E–Li–Ruiz) For general graphs Γ , Γ ′ we have C ∗ ( A + Γ ) ≃ C ∗ ( A + Γ ′ ) precisely when 1 t (Γ) = t (Γ ′ ) 2 N k (Γ) + N − k (Γ) = N k (Γ ′ ) + N − k (Γ ′ ) for all k k > 0 N k (Γ ′ ) mod 2 3 N 0 (Γ) > 0 or � k > 0 N k (Γ) ≡ � Slide 13/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  19. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n n = 5 N − 4 = 1 N − 3 = 1 N − 2 = 1 N − 2 = 1 N − 2 = 1 N − 1 = 1 N − 1 = 1 N − 1 = 1 N − 1 = 1 N − 1 = 1 N − 1 = 1 N − 1 = 1 N 0 = 1 N 0 = 1 N 0 = 1 N 0 = 1 N 0 = 1 N 0 = 1 N 1 = 1 N 1 = 1 N 1 = 1 N − 3 = 1 N − 2 = 1 N − 2 = 1 N − 1 = 2 N − 1 = 1 N − 1 = 1 N 1 = 1 t = 1 N − 1 = 1 t = 1 t = 1 t = 1 t = 1 N 0 = 1 N − 2 = 1 N − 1 = 2 N − 1 = 1 N − 1 = 1 t = 5 t = 1 t = 2 t = 1 t = 2 t = 3 Slide 14/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

  20. u n i v e r s i t y o f c o p e n h a g e n c e n t r e f o r s y m m e t r y a n d d e f o r m a t i o n Semiprojectivity It is well known that T and E 2 are semiprojective. But Observation (Enders) T ⊗ A is only semiprojective when A is finite-dimensional. Slide 15/15 — Søren Eilers — The C ∗ -algebras of right-angled Artin–Tits monoids — SYM lecture, March 19, 2014

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend