the bohr sommerfeld groupoid of
play

The Bohr-Sommerfeld groupoid of quantum CP n joint with F. Bonechi, - PowerPoint PPT Presentation

The Bohr-Sommerfeld groupoid of quantum CP n joint with F. Bonechi, J. Qiu, M. Tarlini Commun. Math. Phys. 331, 851-885 (2014) N. Ciccoli Warsaw 20.08.2014 Multiplicative integrability - CP n N. Ciccoli KWZ program Let ( M , ) be an


  1. The Bohr-Sommerfeld groupoid of quantum CP n joint with F. Bonechi, J. Qiu, M. Tarlini Commun. Math. Phys. 331, 851-885 (2014) N. Ciccoli Warsaw – 20.08.2014 Multiplicative integrability - CP n N. Ciccoli

  2. KWZ program Let ( M , π ) be an integrable Poisson manifold with symplectic groupoid r − G ( M ) M : m : G 2 ( M ) → G ( M ) ⇒ − l Karasev-Weinstein-Zakrzewski Apply geometric quantization to G ( M ) and compare the outcome with deformation quantization of ( M , π ) . Multiplicative integrability - CP n N. Ciccoli

  3. Symplectic integration For a Poisson manifold ( M , π ) the cotangent bundle T ∗ M has a natural structure of Lie algebroid (i.e. Lie bracket between 1–forms + Lie map between 1-forms and vector fields). A symplectic groupoid is a Lie groupoid integrating this Lie algebroid (much as Lie groups integrate Lie algebras - but... possible obstructions). If the obstruction is not present (meaning of the word integrable ) then the groupoid has also a symplectic manifold compatible with the Lie groupoid structure. Multiplicative integrability - CP n N. Ciccoli

  4. KWZ program Prequantum line bundle ( L , ∇ ) + σ covariantly constant 1 normalized 2–cocycle in L ; Multiplicative polarization F : set of leaves G ( M ) / F is a 2 groupoid inheriting (reduced) 2–cocycle σ 0 ; Bohr-Sommerfeld condition identifying a subgroupoid 3 ( G ( M ) / F ) bs ; (Twisted) convolution C ∗ –algebra C ∗ (( G ( M ) / F ) bs ; σ 0 ) . 4 Multiplicative integrability - CP n N. Ciccoli

  5. Motivating example Let M = T 2 with constant symplectic structure π = θ∂ 1 ∧ ∂ 2 G ( T 2 ) = T ∗ T 2 (change in grpd + sympl.) Prequantum bundle= trivial line bundle + 2–cocycle; Horizontal polarization ⇒ C ∗ ( Z 2 ; σ 0 ) with σ 0 = e π (Weyl); Cylindrical polarization ⇒ C ∗ ( Z ⋊ S 1 ) action groupoid with trivial cocycle (irrational rotation algebra). Outcome Quantum torus p ⋆ q = e � q ⋆ p . Multiplicative integrability - CP n N. Ciccoli

  6. Multiplicative polarization A groupoid polarization F ⊆ T C G is multiplicative (Hawkins JSG 2008) if, letting F 2 = ( F × F ) ∩ T C G 2 then m ∗ ( F 2 ( γ, η )) = F ( m ( γ, η )) for any composable pair ( γ, η ) ∈ G 2 . Problem: there are topological obstructions to the existence of real multiplicative polarizations Multiplicative integrability - CP n N. Ciccoli

  7. CP 1 -obstruction Let π be any integrable Poisson structure on CP 1 , then there are no real multiplicative polarizations on its symplectic groupoid (linked to non existence of rank 1 foliations on CP 1 ). Bruhat-Poisson structure on CP 1 : on CP 1 \ [ 1 , 0 ]  − ı ( 1 + | z | 2 ) ∂ z ∧ ∂ z  π B = on CP 1 \ [ 0 , 1 ] − ı | w | 2 ( 1 + | w | 2 ) ∂ w ∧ ∂ w  Still possibile to perform KWZ procedure with a singular multiplicative polarization (Bonechi, C., Staffolani, Tarlini JGP 2012). Multiplicative integrability - CP n N. Ciccoli

  8. Loosening requirements What do we really need for a C ∗ –groupoid convolution algebra? G → G F Lagrangian fibration of topological groupoids; G bs F Bohr–Sommerfeld subgroupoid carrying a left Haar measure; the prequantization cocycle descending to G bs F ; the modular 1 –cocycle descending to G bs F ; Multiplicative integrability - CP n N. Ciccoli

  9. Intermezzo – the modular cocycle ( M , π ) Poisson, V volume form on M ⇒ χ V modular vector field (divergence of π w.r. to V ) defines a class in H 1 π ( M ) . χ V ⇒ f V (van Est map) 1–cocycle on G ; f V should be quantizable, coincide with the modular function of the quasi invariant measure on the base space, implement KMS condition . Multiplicative integrability - CP n N. Ciccoli

  10. Multiplicative integrable system integrable A family F = { f 1 , . . . f N } of functions, N = 1 2 dim G , is an integrable system if are in involution { f i , f j } = 0 and df 1 ∧ . . . ∧ df N � = 0 on a dense open subset of M . multiplicative The integrable system is called multiplicative if the distribution F = � X f 1 , . . . X f N � is multiplicative, or, more generically, if the topological space of level sets of f 1 , . . . f N inherits a topological groupoid structure from G . modular The integrable system is called modular if the modular function f V is in involution with all f i ’s. Multiplicative integrability - CP n N. Ciccoli

  11. Multiplicative integrable system Consider the level sets of a multiplicative integrable system G F ( M ) = G ( M ) / F It is well behaved if: G F ( M ) is a topological groupoid and G ( M ) → G F ( M ) a 1 topological groupoid epimorphism; For each pair l 1 , l 2 of composable leaves m : l 1 × l 2 → l 1 l 2 2 induces a surjective map in homology ( ⇒ subgroupoid G bs F ( M ) ). G bs F ( M ) admits a left Haar system (guaranteed if it is étale). 3 Multiplicative integrability - CP n N. Ciccoli

  12. Let SU ( n + 1 ) be given the standard Poisson–Lie structure π std . There is a one–parameter family of covariant ( CP n , π t ) , non symplectic when t ∈ [ 0 , 1 ] . Non symplectic are all quotient by coisotropic subgroups: U t ( n ) = σ t S ( U ( 1 ) × U ( n )) σ − 1 ⊆ SU ( n + 1 ) t where √ √   1 − t 0 t σ t = 0 0 id n − 1 √ √   − t 0 1 − t Multiplicative integrability - CP n N. Ciccoli

  13. Some equivalences. In fact: ψ : CP n → CP n ; ψ ( π t ) = − π 1 − t π 0 , π 1 , standard or Bruhat–Poisson π t , t ∈ ] 0 , 1 [ , non standard . Poisson pencil Let π λ be the Fubini-Study bivector. Then [ π λ , π 0 ] = 0 (Koroshkin-Radul-Rubtsov CMP ’93) and π t = π 0 + t π λ . Multiplicative integrability - CP n N. Ciccoli

  14. Standard CP n : symplectic foliation Projecting the chain of Poisson subgroups SU ( 1 ) ⊆ SU ( 2 ) ⊆ . . . ⊆ SU ( n ) one gets the chain of Poisson submanifolds {∗} ⊆ CP 1 ⊆ . . . ⊆ CP n − 1 In homogeneous coordinates P k = { [ X 1 , . . . , X k , 0 , . . . , 0 ] } is a Poisson submanifold. All symplectic leaves are contractible and symplectomorphic to standard C k . Multiplicative integrability - CP n N. Ciccoli

  15. Non standard CP n : symplectic foliation singular locus Let � k n � | X i | 2 − ( 1 − t ) | X i | 2 = 0 � � P k ( t ) = F k , t = t i = 1 i = k + 1 Then � n i = 1 P i ( t ) is the singular part; complement has n + 1 connected contractible leaves ≃ C n . Scheme of the singular part for CP 3 : S 3 × S 3 S 5 S 5 S 1 տ ր տ ր S 3 S 3 տ ր S 1 Multiplicative integrability - CP n N. Ciccoli

  16. symplectic foliation of CP 2 t Multiplicative integrability - CP n N. Ciccoli

  17. The symplectic groupoid of ( CP n , π t ) The symplectic groupoid G ( CP n , π t ) = { [ g γ ] : g ∈ SU ( n + 1 ) , γ ∈ SB ( n + 1 , C ) , g γ ∈ U t ( n ) ⊥ } is a fibre bundle over CP n with contractible fibre U t ( n ) ⊥ . It is an exact symplectic manifold. It carries a hamiltonian T n –action with momentum map h ([ g γ ]) = log p A n + 1 ( γ ) Multiplicative integrability - CP n N. Ciccoli

  18. Bihamiltonian torus action The Cartan T n ⊆ SU ( n + 1 ) acts on ( CP n , π λ ) with momentum map c : CP n → t ∗ n ; Im c = ∆ n The action is Poisson w. r. to π t . Suitable basis H k of t n such that infintesimal vector fields σ H k are eigenvalues of the 1 Nijenhuis operator with eigenvector ( c k − 1 ) ; σ H k = { b k , −−} , with b k = log | c k − 1 + t | . 2 Multiplicative integrability - CP n N. Ciccoli

  19. Summarizing actions Hamiltonian T n –action on CP n with momentum map c : CP n → R n ; Hamiltonian T n –action on G ( CP n , π t ) with momentum map h : G ( CP n ) → R n by groupoid 1–cocycles; Let us consider F = { l ∗ c i , h i . . . i = 1 , . . . , n } Multiplicative integrability - CP n N. Ciccoli

  20. Theorem F is a multiplicative modular integrable system on G ( CP n , π t ) with: n � f FS = h i i = 1 Aim: prove this integrable system is well behaved. Multiplicative integrability - CP n N. Ciccoli

  21. The topological groupoid of level sets Let R n act on R n via c · h = ( 1 − t + e − h ( c + t − 1 )) and let R n ⋊ R n � ∆ n be the action groupoid restricted to the � standard simplex.Then: G F ( t ) = { ( c , h ) ∈ R n ⋊ R n � ∆ n : c i = c i + 1 = 1 − t ⇒ h i = h i + 1 } � is the topological groupoid of level sets. Multiplicative integrability - CP n N. Ciccoli

  22. Bohr-Sommerfeld conditions Level sets L ch are connected with: H 1 ( L ch ; Z ) generated by hamiltonian flows of h j , l ∗ c j ; Theorem BS conditions select a discret subset of lagrangians G bs F ( t ) = { ( c , h ) ∈ G F ( t ) : h k ∈ �Z , log | c k − 1 + t | ∈ �Z } This is an étale subgroupoid with a unique left Haar system. The modular function f FS is quantized to n � f FS ( c , h ) = h i i = 1 Multiplicative integrability - CP n N. Ciccoli

  23. The space of units is ∆ Z n ( t ) = { c ∈ ∆ n : c k = 1 − t + e − � n k } The quasi invariant measure associated to f FS is: n � µ fs ( c ) = exp ( − � n k ) k = 1 Groupoid orbits are labelled by ( r , s ) : r + s ≤ n . Each is a transitive subgroupoid over � � s : − log ( 1 − t ) r × ∞ × Z ≤ m i ≤ m i + 1 ∆ Z � r , s ( t ) = ( m , ∞ , n ) ∈ Z ≥ − log ( t ) ≥ n i + 1 n i � Multiplicative integrability - CP n N. Ciccoli

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend