the average lang trotter conjecture for imaginary
play

The average Lang Trotter Conjecture for imaginary quadratic fields - PowerPoint PPT Presentation

The average Lang Trotter Conjecture for imaginary quadratic fields Francesco Pappalardi Chennai - January, 2002 0-0 The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 1 Notations. E :


  1. The average Lang Trotter Conjecture for imaginary quadratic fields Francesco Pappalardi Chennai - January, 2002 0-0

  2. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 1 ✞ ☎ ✝ Notations. ✆ E : Y 2 = X 3 + aX + b • Elliptic curve: − ∆ E = 4 a 3 + 27 b 2 � = 0); ( a, b ∈ Z , p | Y 2 = X 3 + aX + b } ( X, Y ) ∈ F 2 • E ( F p ) = { ; • Trace of Frobenius: a p ( E ) = p − # E ( F p ); | a p ( E ) | ≤ 2 √ p ; • Hasse bound: • Lang Trotter function: r ∈ Z π r E ( x ) = # { p ≤ x | a p ( E ) = r } . Universit` a Roma Tre

  3. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 2 ✞ ☎ The Lang Trotter Conjecture ✝ ✆ If r � = 0 or E not CM, ✞ ☎ √ x π r E ( x ) ∼ C E,r log x , C E,r ≥ 0 . ✝ ✆ √ x 1 π r 1 E ( x ) ≈ � Prob( a p ( E ) = r ) ≈ = = = = > 2 √ p ∼ log x . 2 √ p p ≤ x Universit` a Roma Tre

  4. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 3 ✞ ☎ ✝ State of the Art. ✆ • M. Deuring (1941): If E has CM π E, 0 ( x ) ∼ 1 x log x ; 2 • J. P. Serre (1981) , Elkies, Kaneko, K. Murty, R. Murty, N. Saradha, Wan (1988):  x (log log x ) 2 if r � = 0  log 2 x π E,r ( x ) ≪ if r = 0 and x 3 / 4 E not CM  • N. Elkies, E. Fouvry, R. Murty (1996) π E, 0 ( x ) ≫ log log log x/ (log log log log x ) 1+ ǫ (Stronger results on GRH) Universit` a Roma Tre

  5. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 4 ✞ ☎ Average Lang Trotter Conjecture ✝ ✆ E. Fouvry, R. Murty (1996), C. David, F. P. (1997) C x = { E : Y 2 = X 3 + aX + b || a | , | b | ≤ x log x, } Then √ x 1 � π E,r ( x ) ∼ c r as x → ∞ . |C x | log x E ∈C x where l ( l 2 − l − 1) � − 1 � l | GL 2 ( F l ) Tr= r | � c r = 2 1 − 1 ( l − 1)( l 2 − 1) = 2 � � . l 2 π π | GL 2 ( F l ) | l l | r l ∤ r Universit` a Roma Tre

  6. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 5 ✞ ☎ Representation on n -torsion points. ✝ ✆ For n ∈ N • E [ n ] = { P ∈ E ( C ) | nP = O} ⊂ E ( C ) ( n -torsion subgroup); • E [ n ] ∼ = Z /n Z × Z /n Z ; � • Q ( E [ n ]) = K ; ( Q ( E [ n ]) Galois over Q ); K 2 ⊃ E [ n ] \{O} • Aut( E [ n ]) ∼ = GL 2 ( Z /n Z ) ; Gal( Q ( E [ n ]) / Q ) − → GL 2 ( Z /n Z ) . σ �→ { ( x 1 , x 2 ) �→ ( σ ( x 1 ) , σ ( x 2 )) } . injective representation. Theorem.(Serre) If E not CM , Gal( Q ( E [ l ]) / Q ) = GL 2 ( F l ) except finitely many l . Universit` a Roma Tre

  7. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 6 ✞ ☎ Chebotarev Density Thm. & Lang–Trotter Conj. ✝ ✆ • p ramifies in Q ( E [ l ]) < = = = > p | l ∆ E ; • p ∤ l ∆ E , σ p ⊂ Gal( Q ( E [ l ]) / Q ) (Frobenius conjugacy class); • Gal( Q ( E [ l ]) / Q ) ⊆ GL 2 ( F l ), σ p has characteristic polynomial T 2 − a p ( E ) T + p . • a p ( E ) ≡ Tr( σ p ) mod l ; • π E,r ( x ) ≤ # { p ≤ x | a p ( E ) ≡ r (mod l ) } ; • Chebotarev Density Theorem, l ≫ 0, Prob( a p ( E ) ≡ r mod l ) ∼ | GL 2 ( F l ) Tr= r | . | GL 2 ( F l ) | Universit` a Roma Tre

  8. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 7 ✞ ☎ Lang–Trotter Constant ✝ ✆ π r E ( x ) C E,r = lim √ x x →∞ log x ∃ m E,r ∈ N s.t. m E,r | Gal( Q ( E [ m E,r ]) / Q ) Tr= r | l | GL 2 ( F l ) Tr= r | C E,r = 2 � . π | Gal( Q ( E [ m E,r ]) / Q ) | | GL 2 ( F l ) | l ∤ m E,r Universit` a Roma Tre

  9. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 8 ✞ ☎ ✝ More Notations. ✆ • K finite Galois / Q ; • E elliptic curve defined over O K ; • ∆ E discriminant ideal of E/ O K ; • p ∈ Z unramified in K / Q , p ∤ N (∆ E ); • p ⊂ O K , p | p ; • E p reduction of E over O K / ( p ); • E p ( O K / ( p )) = N ( p ) + 1 − a E ( p ); � • Hasse bound | a E ( p ) | ≤ 2 N ( p ); • degree of p : N ( p ) = p deg K ( p ) . Universit` a Roma Tre

  10. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 9 ✞ ☎ A Variation of Lang–Trotter Conjecture ✝ ✆ f | [ K : Q ]. General Lang–Trotter function: π r,f E ( x ) = # { p ≤ x | deg K ( p ) = f, a E ( p ) = r } . Conjecture: ∃ c E,r,f ∈ R ≥ 0 such that  x if E has CM and r = 0  log x  √ x   if f = 1   π r,f log x E ( x ) ∼ c E,r,f log log x if f = 2      1 otherwise.  Example. K = Q ( i ): π r, 1 ↔ split primes ≡ 1 mod 4; π r, 2 ↔ inert primes ≡ 3 mod 4 Universit` a Roma Tre

  11. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 10 ✞ ☎ Statement of Today’s Result ✝ ✆ Theorem. (C. David & F. Pappalardi) K = Q ( i ) , r ∈ Z , r � = 0  �  α = a 1 + a 2 i, β = b 1 + b 2 i ∈ Z [ i ] , �    �    E : Y 2 = X 3 + αX + β 4 α 3 − 27 β 2 � = 0 � C x = � �    �  max {| a 1 | , | a 2 | , | b 1 | , | b 2 |} < x log x   � Then ✓ ✏ 1 � π r, 2 E ( x ) ∼ c r log log x. |C x | ✒ ✑ E ∈C x � � − r 2 l ( l − 1 − ) c r = 1 l � ) . � − 1 � 3 π ( l − 1)( l − l l> 2 Universit` a Roma Tre

  12. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 11 ✞ ☎ Sketch of proof. 1/8 ✝ ✆ Deuring’s Thm. q = p n , r odd (simplicity), s.t. r 2 − 4 q > 0 . � F q − isomorphism classes of E/ F q � = H ( r 2 − 4 q ) . with a q ( E ) = r h ( r 2 − 4 p 2 ) Kronecker class numbers : H ( r 2 − 4 p 2 ) = 2 f 2 � . w ( r 2 − 4 p 2 ) f 2 f 2 | r 2 − 4 p 2 √ � r 2 − 4 p 2). h ( D ) = class number, w ( D ) = #units in Z [ D + D ] ⊂ Q ( ✓ ✏ H ( r 2 − 4 p 2 ) 1 E ( x ) = 1 � π r, 2 � Step 1: + O (1) . p 2 |C x | 2 E ∈C x p ≤ x ✒ ✑ p ≡ 3 mod 4 Universit` a Roma Tre

  13. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 12 ✞ ☎ Sketch of proof. 2/8 ✝ ✆ Given f 2 | r 2 − 4 p 2 , • d = ( r 2 − 4 p 2 ) /f 2 ( ≡ 1 mod 4); � d � • χ d ( n ) = ; n • L ( s, χ d ) Dirichlet L –function; • h ( d ) = ω ( d ) | d | 1 / 2 L (1 , χ d ) (class number formula). 2 π ✗ ✔ Step 2. H ( r 2 − 4 p 2 ) 1 = 2 1 L (1 , χ d ) � � � + O (1) . p 2 p 2 2 π f p ≤ x f ≤ 2 x p ≤ x p ≡ 3 mod 4 p ≡ 3 mod 4 ( f, 2 r )=1 4 p 2 ≡ r 2 mod f 2 ✖ ✕ Universit` a Roma Tre

  14. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 13 ✞ ☎ Sketch of proof. 3/8 ✝ ✆ Lemma A. [Analytic] Let d = ( r 2 − 4 p 2 ) /f 2 , ∀ c > 0, 1 � x � � � L (1 , χ d ) log p = k r x + O . log c x f f ≤ 2 x p ≤ x ( f, 2 r )=1 p ≡ 3 mod 4 4 p 2 ≡ r 2 mod f 2 where ∞ ∞ 1 1 � a � � � b ≡ 3 mod 4 , � b ∈ ( Z / 4 nf 2 Z ) ∗ � � � � k r = # . � 4 b 2 ≡ r 2 − af 2 (4 nf 2 ) nϕ (4 nf 2 ) f n � a ∈ ( Z / 4 n Z ) ∗ f =1 n =1 Lemma B. [Euler product] With above notations, � � − r 2 l − 1 − k r = 2 l � ) . � − 1 � 3 ( l − 1)( l − l l> 2 Universit` a Roma Tre

  15. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 14 ✞ ☎ Sketch of proof. 4/8 ✝ ✆ Start from � e − n/U � | d | 3 / 16+ ǫ � d � 1 � d � � � L (1 , χ d ) = n = + O n n n U 1 / 2 n ∈ N n ∈ N follows from � e − n/U L ( s + 1 , χ d )Γ( s + 1) U s � d � � = L (1 , χ d ) + s ds n n ℜ ( s )= − 1 n ∈ N 2 applying Burgess, L (1 / 2 + it, χ d ) ≪ | t | 2 | d | 3 / 16+ ǫ and obtain e − n � x 11 / 8+ ǫ � d � � 1 U � � � � L (1 , χ d ) log p = log p + O U 1 / 2 f nf n f ≤ 2 x p ≤ x f ≤ 2 x, p ≤ x ( f, 2 r )=1 p ≡ 3 mod 4 n ∈ N p ≡ 3 mod 4 4 p 2 ≡ r 2 mod f 2 4 p 2 ≡ r 2 mod f 2 ( f, 2 r )=1 Universit` a Roma Tre

  16. The average Lang Trotter Conjecture for imaginary quadratic fields Chennai, January 2002 15 ✞ ☎ Sketch of proof. 5/8 ✝ ✆ e − n � d � � � 1 x U � � � � L (1 , χ d ) log p = log p + O log c x f nf n f ≤ 2 x p ≤ x f ≤ V, p ≤ x p ≡ 3 mod 4 n ≤ U log U p ≡ 3 mod 4 ( f, 2 r )=1 4 p 2 ≡ r 2 mod f 2 4 p 2 ≡ r 2 mod f 2 ( f, 2 r )=1 where U = x 1 − ǫ . Easy to deal with f > V = (log x ) a , n > U log U . d � � Since character modulo 4 n n � d � a � � � � � log p = log p n n a ∈ ( Z / 4 n Z ) ∗ p ≤ x p ≤ x, p ≡ 3 mod 4 p ≡ 3 mod 4 ( r 2 − 4 p 2 ) /f 2 ≡ a mod 4 n 4 p 2 ≡ r 2 mod f 2 a � � � � ψ 1 ( x, 4 nf 2 , b ) = n a ∈ ( Z / 4 n Z ) ∗ b ∈ ( Z / 4 nf 2 Z ) ∗ b ≡ 3 mod 4 4 b 2 ≡ r 2 − af 2 mod 4 nf 2 � where as usual ψ 1 ( x, 4 nf 2 , b ) = log p 2 ≤ p ≤ x, p ≡ b mod 4 nf 2 Universit` a Roma Tre

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend