the anti field descent method
play

The Anti-Field-Descent Method Bernhard Schmidt Nanyang - PowerPoint PPT Presentation

The Anti-Field-Descent Method Bernhard Schmidt Nanyang Technological University Joint work with Ka Hin Leung Bordeaux, June 2017 Ryser (1963) Eigenvalues = = || 2


  1. The Anti-Field-Descent Method Bernhard Schmidt Nanyang Technological University Joint work with Ka Hin Leung Bordeaux, June 2017

  2. Ryser (1963)

  3. Eigenvalues 𝐼 π‘ˆ 𝐼 = 𝑀𝐽 𝑦 π‘ˆ 𝐼 π‘ˆ 𝐼𝑦 = |πœ‡| 2 𝑦 𝑦 π‘ˆ 𝐼𝑦 = πœ‡π‘¦ β‡’ 𝐼 π‘ˆ 𝐼 = 𝑀𝐽 β‡’ 𝑦 π‘ˆ 𝐼 π‘ˆ 𝐼𝑦 = 𝑀𝑦 𝑦 π‘ˆ πœ‡ ∈ β„‚ eigenvalue of Hadamard matrix of order 𝑀 ⇓ |πœ‡| 2 = 𝑀

  4. Circulants 𝑏 0 𝑏 1 β‹― 𝑏 π‘€βˆ’1 𝑏 π‘€βˆ’1 𝑏 0 β‹― 𝑏 π‘€βˆ’2 𝐼 = β‹― β‹― β‹― β‹― 𝑏 1 𝑏 2 β‹― 𝑏 0 Eigenvalues: π‘€βˆ’1 𝑏 𝑗 πœ‚ 𝑗𝑙 , 𝑙 = 0, … , 𝑀 βˆ’ 1, πœ‚ = exp( 2πœŒπ‘— 𝑗=0 𝑀 ) 2 π‘€βˆ’1 𝑏 𝑗 πœ‚ 𝑗𝑙 β‡’ = 𝑀 𝐼 Hadamard matrix 𝑗=0 Note: Implies 𝑀 = 4𝑣 2

  5. Basic Idea What does 2 π‘€βˆ’1 𝑏 𝑗 πœ‚ 𝑗𝑙 = 𝑀 𝑗=0 say about the 𝑏 𝑗 ’s?

  6. Divisibility Method (Turyn) 15 𝑏 𝑗 πœ‚ 𝑗 2 = 16, πœ‚ = exp( 2πœŒπ‘— Suppose 𝑗=0 16 ) 1 βˆ’ πœ‚ 3 β‹― (1 βˆ’ πœ‚ 15 ) Factorization: 2 = 1 βˆ’ πœ‚ 15 𝑏 𝑗 πœ‚ 𝑗 2 in β„€[πœ‚] Hence 1 βˆ’ πœ‚ 32 divides 𝑗=0 πœ‚ = 1 βˆ’ πœ‚ 15 = (1 + β‹― + πœ‚ 14 )(1 βˆ’ πœ‚) 1 βˆ’ 1 βˆ’ πœ‚ = (1 + β‹― + πœ‚ 14 )(1 βˆ’ πœ‚) 15 𝑏 𝑗 πœ‚ 𝑗 Thus 1 βˆ’ πœ‚ 16 divides 𝑗=0

  7. Divisibility Method (Turyn) 15 𝑏 𝑗 πœ‚ 𝑗 1 βˆ’ πœ‚ 16 divides 𝑗=0 15 𝑏 𝑗 πœ‚ 𝑗 4 divides 𝑗=0 15 𝑏 𝑗 πœ‚ 𝑗 = 𝑗=0 7 (𝑏 𝑗 βˆ’π‘ 𝑗+8 )πœ‚ 𝑗 Basis representation: 𝑗=0 4 divides 𝑏 𝑗 βˆ’ 𝑏 𝑗+8 for all 𝑗 𝑏 𝑗 ’s cannot be Β±1 No circulant Hadamard matrix of order 16

  8. Turyn (1965) Suppose a circulant Hadamard matrix of order 𝑀 = 4𝑣 2 , 𝑣 β‰₯ 2, exists. Then: β€’ 𝑣 is odd and 𝑣 β‰₯ 55 β€’ If π‘Ÿ is a prime power dividing 𝑣 , then π‘Ÿ 3 ≀ 2𝑣 2 β€’ β€œSelf - conjugacy” bound holds All results based on divisibility conditions for 𝑏 𝑗 ’s π‘€βˆ’1 𝑏 𝑗 πœ‚ 𝑗𝑙 2 = 𝑀 coming from 𝑗=0

  9. Further Known Results on Circulant Hadamard Conjecture Suppose a circulant Hadamard matrix of order 𝑀 = 4𝑣 2 , 𝑣 β‰₯ 2, exists. 2 π‘‘βˆ’1 𝐺(4𝑣 2 , 𝑣) β‰₯ 𝑣 2 ( 𝑑 = is number of distinct prime divisors of 𝑣 ) β€’ (S. 1999) β€’ Only finitely many possible 𝑣 if the prime divisors of 𝑣 are bounded by a constant (S. 1999) 𝐺 4𝑣 2 , 𝑣 2 /(4πœ’(𝐺 4𝑣 2 , 𝑣 ) β‰₯ 𝑣 2 (S. 2001) β€’ 𝐺 𝑣 2 , 𝑣 𝑣/πœ’(𝑣) β‰₯ 𝑣 2 (Leung, S. 2005) β€’ β€’ 𝑣 β‰₯ 11715 (Leung, S. 2005) β€’ Improved F-bounds (Leung, S. 2012)

  10. Parseval for Polynomials π‘€βˆ’1 𝑏 𝑗 𝑦 𝑗 and πœ‚ = exp( 2πœŒπ‘— Let 𝑔 𝑦 = 𝑗=0 𝑀 ) π‘€βˆ’1 π‘€βˆ’1 2 = 𝑔 πœ‚ 𝑙 𝑔 πœ‚ 𝑙 𝑔 πœ‚ 𝑙 𝑙=0 𝑙=0 π‘€βˆ’1 𝑏 𝑗 𝑏 π‘˜ πœ‚ 𝑙(π‘—βˆ’π‘˜) = 𝑙=0 𝑗,π‘˜ π‘€βˆ’1 πœ‚ 𝑙(π‘—βˆ’π‘˜) = 𝑏 𝑗 𝑏 π‘˜ 𝑗,π‘˜ 𝑙=0 = 𝑀 𝑏 𝑗2

  11. F-Bound (S.) Let’s try to prove 2 π‘€βˆ’1 𝑏 𝑗 πœ‚ 𝑗 < 𝑀 𝑗=0 2 = 𝑀 for all 𝑙 π‘€βˆ’1 𝑏 𝑗 𝑦 𝑗 . Then 𝑔 πœ‚ 𝑙 Write 𝑔 𝑦 = 𝑗=0 2 = 𝑀 2 π‘€βˆ’1 𝑔 πœ‚ 𝑙 Parseval β‡’ 𝑀 2 = 𝑀 𝑏 𝑗2 = 𝑙=0 2 = πœ’ 𝑀 𝑀 In particular, 𝑀 2 β‰₯ 𝑙:gcd 𝑙,𝑀 =1 𝑔 πœ‚ 𝑙

  12. F-Bound (S.) Suppose there is a divisor 𝐺 of 𝑀 such that π‘€βˆ’1 πΊβˆ’1 𝑏 𝑗 πœ‚ 𝑗 = 𝑏 𝑗𝑀/𝐺 πœ‚ 𝑗𝑀/𝐺 𝑗=0 𝑗=0 By the same argument, 2 = πœ’ 𝐺 𝑀 𝐺 2 β‰₯ 𝑔 πœ‚ 𝑙𝑀/𝐺 𝑙:gcd 𝑙,𝐺 =1 𝐺 2 Thus 𝑀 ≀ (F-bound) πœ’ 𝐺

  13. Field Descent (S. 1999) Goal: Find divisor 𝐺 of 𝑀 with π‘€βˆ’1 πΊβˆ’1 𝑏 𝑗 πœ‚ 𝑗 = 𝑏 𝑗𝑀/𝐺 πœ‚ 𝑗𝑀/𝐺 (βˆ—) 𝑗=0 𝑗=0 Let π‘ž is the largest prime divisor of 𝑀 = 4𝑣 2 If ord π‘ž 2 π‘Ÿ ≑ 0 (mod π‘ž) for all prime divisors π‘Ÿ β‰  π‘ž of 𝑣 , then (βˆ—) holds with 𝐺 = 𝑀/π‘ž 𝑀 π‘ž 2 𝑀 Hence 𝑀 ≀ β‡’ πœ’(𝑀) β‰₯ π‘ž πœ’ 𝑀 π‘ž

  14. What if Field Descent Fails? 𝑀 = 4𝑣 2 , 𝑣 odd, π‘ž largest prime divisor of 𝑣 If field descent fails, then ord π‘ž 2 π‘Ÿ β‰’ 0 (mod π‘ž) for some prime divisor π‘Ÿ β‰  π‘ž of 𝑣. In fact, π‘€βˆ’1 𝑀 π‘žβˆ’1 𝑏 𝑗 πœ‚ 𝑗 β‰  𝑏 π‘—π‘ž πœ‚ π‘—π‘ž (βˆ—βˆ—) 𝑗=0 𝑗=0 Idea: Use (βˆ—βˆ—) to construct another cyclotomic integer with β€œstrange” properties

  15. β€œTwisted” Cyclotomic Integer π‘€βˆ’1 𝑀 π‘žβˆ’1 𝑏 𝑗 πœ‚ 𝑗 β‰  𝑏 π‘—π‘ž πœ‚ π‘—π‘ž π‘Œ = (βˆ—βˆ—) 𝑗=0 𝑗=0 ord π‘ž 2 π‘Ÿ β‰’ 0 (mod π‘ž) ord π‘ž 2 𝑠 ≑ 0 (mod π‘ž) for 𝑠|𝑣 , 𝑠 β‰  π‘ž, π‘Ÿ β„š(ΞΆ) β„š) with Fix 𝜏 = β„š(πœ‚ π‘ž ) . Recall π‘Œ 2 = 𝑀 Let 𝜏 ∈ Gal( π‘Œπ‘Œ 𝜏 2 = 𝑀 2 and π‘Œπ‘Œ 𝜏 ≑ 0 (mod 𝑀/π‘Ÿ 2 ) Thus

  16. β€œTwisted” Cyclotomic Integer π‘Œπ‘Œ 𝜏 2 = 𝑀 2 π‘Œπ‘Œ 𝜏 ≑ 0 (mod 𝑀/π‘Ÿ 2 ) Set 𝑍 = π‘Œπ‘Œ 𝜏 /( 𝑀 π‘Ÿ 2 ) . Then 𝑍 is a cyclotomic integer with 𝑍 2 = π‘Ÿ 4 and 𝑍 βˆ‰ β„š(πœ‚ π‘ž ) 𝑐 ∈ β„€[πœ‚ π‘ž ] , where 𝐢 is an integral Now write 𝑍 = π‘βˆˆπΆ 𝑍 𝑐 𝑐 with 𝑍 basis of β„š(πœ‚)/β„š(πœ‚ π‘ž ) β„š), πœ‚ 𝜐 = πœ‚ π‘Ÿ . Then 𝑍 𝜐 = πœƒπ‘ for some root of Let 𝜐 ∈ Gal( β„š πœ‚ unity πœƒ

  17. β€œTwisted” Cyclotomic Integer 𝑍 2 = π‘Ÿ 4 and 𝑍 βˆ‰ β„š(πœ‚ π‘ž ) 𝑐 ∈ β„€[πœ‚ π‘ž ] 𝑍 = π‘βˆˆπΆ 𝑍 𝑐 𝑐 with 𝑍 𝑍 𝜐 = πœƒπ‘ 𝑍 𝑐 β‰  0 for some 𝑐 β‰  1 β‡’ 𝑍 𝑐 β‰  0 for at least ord π‘ž (π‘Ÿ) elements 𝑐 𝑍 𝛽 2 β‰₯ ord π‘ž (π‘Ÿ) Gal( β‡’ β„š πœ‚ β„š) π›½βˆˆGal( β„š πœ‚ β„š)

  18. β€œTwisted” Cyclotomic Integer 𝑍 𝛽 2 β‰₯ ord π‘ž (π‘Ÿ) Gal( β„š πœ‚ β„š) π›½βˆˆGal( β„š πœ‚ β„š) 𝑍 2 = π‘Ÿ 4 β‡’ ord π‘ž (π‘Ÿ) ≀ π‘Ÿ 4

  19. Result (Leung, S. 2016), Simplified Suppose a circulant Hadamard matrix of order 4𝑣 2 exists Write 𝑣 = π‘ž 𝑏 π‘₯ where π‘ž is the largest prime divisor of 𝑣 and gcd π‘ž, π‘₯ = 1 Let π‘Ÿ be the prime divisor of π‘₯ which β€œprevents” the field descent π‘ž 2𝑏 β†’ π‘ž 2π‘βˆ’π‘¦ 2 π‘‘βˆ’1 Then ord π‘ž π‘Ÿ ≀ π‘Ÿ 4𝑐 max π‘Ÿ 2 βˆͺ 𝑑 ) : 𝑑 ∈ 𝑇 𝑔 𝑑 (π‘‘βˆ’π‘”

  20. Circulant Hadamard Open Cases Order 4𝑣 2 β€’ Smallest open cases: 𝑣 = 11715 , 82005, 550605, 3854235 . β€’ 1371 open cases with 𝑣 ≀ 10 13 (computation by Borwein, Mossinghoff 2014) β€’ 423 of the 1371 cases ruled out by twisted cyclotomic integer result (Leung, S. 2016)

  21. Barker Sequences 𝑏 0 , … , 𝑏 π‘€βˆ’1 with 𝑏 𝑗 = Β±1 such that π‘œβˆ’π‘™βˆ’1 𝑏 𝑗 𝑏 𝑗+𝑙 ≀ 1, 𝑙 = 1, … , 𝑀 βˆ’ 1 𝑗=0 Exist for: 𝑀 = 1, 2, 3, 4, 5, 7, 11, 13 Conjecture: Barker sequences of length 𝑀 > 13 do not exist

  22. Known Results Suppose a Barker sequence of length 𝑀 exists. β€’ 𝑀 even β‡’ βˆƒ circulant Hadamard matrix of order 𝑀 β€’ 𝑀 odd β‡’ 𝑀 ≀ 13 (Storer, Turyn 1961) β€’ 𝑀 > 13 β‡’ 𝑀 β‰₯ 12,100 (Turyn 1965) β€’ 𝑀 > 13 β‡’ 𝑀 β‰₯ 1,898,884 and π‘ž ≑ 1 (mod 4) for all odd primes π‘ž dividing 𝑀 (Eliahou, Kervaire, Saffari 1990)

  23. Known Results (continued) Suppose a Barker sequence of length 𝑀 > 13 exists. β€’ 𝑀 > 4 βˆ™ 10 12 (β€œfield descent”, S . 1999) β€’ 𝑀 > 10 22 (Leung, S. 2005) β€’ 𝑀 > 2 βˆ™ 10 30 (Leung, S. 2012, Mossinghoff 2009)

  24. Open Cases with Length ≀ 10 50 𝒗 Factorization (computation by Borwein, Mossinghoff 2014)

  25. Result 2 𝑑 βˆ’ 1 ord π‘ž π‘Ÿ ≀ π‘Ÿ 4𝑐 max π‘Ÿ 2 βˆͺ 𝑑 ) : 𝑑 ∈ 𝑇 𝑔 𝑑 (𝑑 βˆ’ 𝑔

  26. Application to Length ≀ 10 50

  27. Consequences for Barker Sequences β€’ There is no Barker sequence of length 𝑀 with 13 < 𝑀 ≀ 4 βˆ™ 10 33 All known open cases with 𝑀 ≀ 10 50 ruled out β€’ 229,305 out of 237,807 open cases with 𝑀 ≀ 10 100 ruled out β€’ β€’ Smallest case known not to be ruled out: 𝑀 = 4 βˆ™ 30109 2 βˆ™ 1128713 2 βˆ™ 167849 2 βˆ™ 268813277 2 β‰ˆ 1.57 βˆ™ 10 51

  28. Thank you!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend