test slide
play

Test slide Optical Atomic Clocks Defining and measuring (Optical) - PowerPoint PPT Presentation

Test slide Optical Atomic Clocks Defining and measuring (Optical) Frequencies then, now and next Jun Ye John L. Hall JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder


  1. Test slide

  2. Optical Atomic Clocks Defining and measuring (Optical) Frequencies then, now and next Jun Ye John L. Hall JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder http://Jilawww.Colorado.edu http://HallStableLasers.com NI$T N$F NA$A ONR

  3. Hall_Labs 2000

  4. Today’s Symposium: - Fundamental Physics – looking inside Kaon Lifetimes Local Lorentz Invariance? Are the Numbers of Physics Dark Energy? time-dependent? Dark Matter How to make progress? a. Visit the Tools store (specializing in laser and electro-optics for all your needs) b. Be sure you can get more resolution with whatever tools you buy! ~N 3/2 New Comb Tools for Speedy & Accurate Frequency/Phase Measurement A Great Highway! With 15 + digits, you might find something interesting …

  5. Mechanical clockworks Verge and Foliot Fusee escapement Pendulum clock

  6. Mechanical clockworks Anchor escapement Spiral balance spring 1675, Huygens, Netherlands 1772, John Harrison, clock H-5 1 s per 3 days (~4 x 10 -6 ) ~1670, in England

  7. Watch, 2002. Mechanical Water clock & Sundial, 1 st or 2 nd clock, 1657. Sandglass. century A.D. Quartz clock Atomic micro clock Atomic hydrogen Grandfather clock maser clock, early 1960s.

  8. Atomic Time from NIST, by radio WWVB 60 kHz Ft. Collins Colorado “Sweet Spot” Better than needed Just-right Tech Cost Effective

  9. What is a clock? Stable Oscillator laser Counter Caveman’s Marks on the fs comb cave walls Electronic NIST-F1 zero-crossing BNM - SYRTE Counter

  10. 3.39 µ m tunable Laser locked to 30 m Cavity CH 4 – stabilized HeNe 3.39 µ m Laser

  11. Saturated Absorption in Methane Gas Line “Q” ~10 9 Reproducibility ~10 -11 Instability < 10 -13 prl 1969 “Working with the Methane-stabilized HeNe Laser at 3392 nm (3.39 µm)” Jan Hall and Dick Barger ~ 1972

  12. τ tr = w 0 / v ∆ν ≅ 88 kHz •mm/ w 0 Transit-time Increase, with Big Beams

  13. Pushing up the Resolution ~ 1973 1 kHz HWHM ~ 10 -5 *Doppler Width

  14. Hall, Bordé, Uehara prl 37 1339 (1976) Recoil-induced splitting of hfs Lines (CH 4 )

  15. A New Wavelength Standard? !!! HeNe fringes At 3.39 µ m Krypton fringes At 605.7 nm (1960) 4 x10 -9 in 300 s ! Frequency Scan R. L. Barger and JLH ’71 ; APL 22 , 196 (1973)

  16. BIPM’s Kg and Metre ProtoTypes Metre bar replaced in 1960 by light-wave definition – Krypton 605.7 nm line (Isotope 86) First optical fringe measurement by A. A. Michelson 1887 � Nobel Prize 1907

  17. Metrology, the Mother of Science Today’s Symposium features Length and Time/Frequency Length – Depends on: Ell, Braunschweig ~1600 Inter-atomic distances, Metre Bar, Paris ~1875 E & M/ Quantum Mechanics Cadmium Lamp A.A.Michelson 1887 Nobel Prize A.A.M. ±4 x10 -7 1907 Krypton Lamp ±4 x10 -9 1960 Methane-Stab. Laser ±1 x10 -11 1972 c adopted constant 0 1983 Day Frequency – Depends on: Mean Solar Day 1875 Tropical Astronomical Year 1960 Internal electronic energy differences Cesium Second 1967 E & M/ Quantum Mechanics Cs Fountain Clock ±1 x10 -15 ~2000 Fine-Structure Constant Hg+ -stabilized Laser ±1 x10-15 2004

  18. Measuring Optical Frequencies Frequency Starting Point: 9, 192, 631, 770 cycles per second Target Frequency of Mercury Ion: 1 064 721 609 899 143 cps Frequency Ratio Needed: 115 823.372 081 … A ratio of 115 Thousand ! How can we ever do this?

  19. Here’s the first Government PLAN x7 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 1 electronic + 14 Laser stages

  20. Frequency spectrum in optical frequency synthesis 10 15 H, Hg + Ca I 2 Visible Molecular Rb, Cs overtones 10 14 H 2 O CH 4 MIM or Lasers Schottky OsO 4 10 13 CO 2 diode HCOOH CH 3 OH 10 12 Log HCN Frequency BWO 10 11 (Hz) Microwave oscillators, 10 10 Cs Klystrons, W-Si µ wave etc. diode 10 7 Crystal oscillator

  21. The First NBS Optical Frequency Chain NBS (NIST): measurement of speed of light, 1972 K. Evenson J. Wells J. L. Hall & J. Ye, “NIST 100th birthday”, Optics & Photonics News 12, 44, Feb. 2001

  22. c = ν λ The NBS Speed of Light Program: ν =88 376 181 627. kHz Evenson’s ν Team ± 50. K.M.E., J.S. Wells, F.R. Petersen B.L.Danielson, & G.W. Day And D. A. Jennings λ =3 392.231 390 nm JILA λ Team ± .000 01 R. L.Barger & J. L. Hall c = 299, 792, 457.4 m/s Our Finest Product ! PRL 29 1346 (1972)

  23. “The Metre is the length of the path travelled by light (in vacuum) in 1/299 792 458 of a second” ie., c = 299 792 458 m/s, exactly CGPM 1983 1983 Metre Re-Definition & Demotion

  24. Meanwhile, on Hwy 50, W of Port Allen, Kauai (Hawaii)

  25. Molecular Frequency Standards ~1997 3.39 µ m • HeNe Laser w CH 4 Absorber • HeNe vis Laser w I 2 Absorber ~5 vis λ ’s 10.6 µ m • CO 2 Laser w CO 2 Absorber 10.6 µ m • CO 2 Laser w OsO 4 Absorber • Ar + Laser w I 2 Absorber 514 nm • Nd:YAG Laser w I 2 Absorber 1064 nm • Nd:YAG Laser w C 2 HD Abs. 1064 nm • Yb:YAG Laser w C 2 H 2 Abs. 1030 nm • Diode Lasers w C 2 H 2 Abs. 1550 nm

  26. Venya Chebotayev & Ken Evenson “How are we going to measure those optical frequencies?” Lindy, Vera, Ken, & Venya Celebrating the new Hall_Labs, April 1988

  27. Frequency (THz) 0 88 192.6 266.2 281.6 385.3 456 473.6 563 617 Rb/2 I 2 /2 + C 2 H 2 CH 4 Hg Rb Ca HeNe I 2 H C 2 HD λ (nm) 3390 1556 1126 778 657 532 486 633 1064 f ( λ =778 nm) + f ( λ =532 nm) = 2 x f ( λ =632 nm) f ( λ =632 nm) = f ( λ =633 nm) + 660 GHz Kourogi’s 1994 Comb! = 66 x 10 GHz (µ-wave/optical comb) The JILA f( λ =532 nm) frequency measurement scheme IEEE Trans. Instrum & Meas. 48 583 (1999)

  28. Phase coherent distribution Optical ω 3 frequency Femtosecond Laser Comb 10 6 :1 Reduction Gears Q ~ 10 14 – 10 15 (not to scale!) ω 1 Radio Frequency ω Q ~ 10 8 – 10 11 6 3 ~ 10 ω 1

  29. Frequency (THz) 0 88 192.6 266.2 281.6 385.3 456 473.6 563 617 Rb/2 I 2 /2 1997 + C 2 H 2 CH 4 Hg Rb Ca HeNe I 2 H C 2 HD λ (nm) 3390 1556 1126 778 657 532 486 633 1064 Measuring Spectral δ -functions with Temporal δ -functions?! •Periodicity in Time = Periodicity in Frequency known freq. f 0 unknown freq. F.T. f 0 +n ∆ Time Frequency τ r.t =2L/v g ∆=1/ τ r.t. T. Hänsch (1978), V. P. Chebotayev (1977); Th. Udem,et al. PRL 82 , 3568 (1999).

  30. The First Comb RF-Optical Link 4f –3.5 f = n f rep So: f = 2 n f rep “Phase Coherent Vacuum-Ultraviolet to Radio Frequency Comparison with a Mode-Locked Laser,” PRL 84 3232 (2000) 10 April 2000 J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch

  31. Honeycomb Microstructure Optical Fiber CLEO,May, 1999 Dawn of a new Epoch ! courtesy of Jinendra Ranka

  32. Seriously- nonlinear optics (O(20)) R. Windeler J.K Ranka, R. S. Windeler, A. Stenz, Opt. Lett. 25 , 25 (Jan. 2000) Microstructured fiber dispersion zero at ~800 nm pulses do not spread continuum generation via self-phase modulation Lucent Technologies -30 After fiber Detected Power (dBm) -40 -50 -60 Pre-fiber (Ti:Sapph) -70 400 600 800 1000 1200 Wavelength (nm)

  33. Group vs. Phase in Modelocked Lasers • Each pulse emitted by a modelocked laser has a distinct envelope-carrier phase – due to group-phase velocity differential inside cavity Laser Free Space Cavity High Output Reflector Coupler Thanks: Steve Cundiff

  34. Time Domain Frequency Domain ∆φ 2∆φ E(t) Time Domain t 1/ f rep F.T. δ δ I(f) I(f) f rep f rep Frequency Domain f f 0 0 •Frequency modes of the fs pulse are offset from f n=0 =0 by δ 2πδ= ∆φ f rep

  35. Self-referenced Optical Frequency Synthesizer δ ∆ I(f) f 0 f 2n =2n ∆ - δ f n =n ∆ - δ 2f n =2n ∆ -2 δ x2 δ can be set at any fixed frequency: δ For example, δ = 0: f n = n ∆ Telle, Appl Phys B ‘99 Jones, Science ‘00 Absolute control of carrier-pulse phase: extreme nonlinear optics, precision optical waveforms

  36. Phase-Controlled 10 fs Laser Orthogonalizing control degrees of freedom Output Coupler & Translating Piezo (Mode Position) ∆ L Prism Pair β Pump High Reflector Ti:Sapphire & Tilting Piezo Gain (Mode Spacing) ν +2 ν +1 ν 0 ν -1 ν +2 ν +1 ∆ ∆ L ν 0 ∆ ν -1 ν ∝ ∆ L n ν -2 β ∆ ∝ β Laser: Kapteyn, Murnane, Cundiff Control Ideas: Udem et. al., Hall, Ye Th. Udem, et al, PRL 82 , 3568 (1999).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend