technische universit t hamburg harburg
play

Technische Universitt Hamburg-Harburg in cooperation - PowerPoint PPT Presentation

15. Januar 2007 www.ie-leipzig.de Forschung, Institut fr Energetik und Umwelt Entwicklung, Dienstleistung fr - Energie Institute for Energy and Environment - Umwelt Economic Assessment of Geothermal Energy Generation Martin


  1. 15. Januar 2007 www.ie-leipzig.de Forschung, Institut für Energetik und Umwelt Entwicklung, Dienstleistung für - Energie Institute for Energy and Environment - Umwelt Economic Assessment of Geothermal Energy Generation Martin Kaltschmitt, Stephanie Frick Mid-Term Conference, Potsdam, 11 th January 2007 Technische Universität Hamburg-Harburg ��� ��� ��� ��� in cooperation with Institute for Environmental Technology and Energy Economics Institut für Energetik und Umwelt gGmbH, Torgauer Str. 116, D-04347 Leipzig, info@ie-leipzig.de

  2. ��� ��� ��� ��� ��� ��� ��� ��� Agenda � Introduction � Geothermal energy production � Economic analysis (Case Study) • Reservoir • Power plant concept • Investments and operation costs • Power generation costs • Sensitivity analysis � Conclusions

  3. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Energy � Not only due to climate protection reasons renewable sources of energy gain more and more importance on a world wide scale as well as within Europe. This is also and especially true for the heat and/or electricity provision from geothermal resources due to numerous advantages. � One of the main advantage of a use of geothermal energy is that heat, electricity and even cold can be provided easily with the already available conversion technology. Advantages: Disadvantages: � � No seasonal and daily course of Technology is still very much depen- the energy supply dent from the local circumstances � � Demand-oriented energy Low electrical efficiency due to provision is easily possible thermodynamic restrictions � � Quasi – renewable High investments and substantial risks at the beginning which are hard � Energy provision potential is very to cover by an insurance so far huge � Market penetration in Europe is still � Basically independent from a lacking certain spot

  4. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Heat Production in Europe Source: http://www.f-e-e.org/upload/DV20050528-Flovenz.htm

  5. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Power Production in Europe Iceland Germany Italy Austria Russia (Kamtchatka, Kuril Islands) Portugal Turkey (Azores) France (French West Indies) Source: IGG (A. Manzella)

  6. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Energy Use in Europe � Geothermal heat production is already widely used and can be seen as a competitive energy source for heat supply if the geological conditions are promising. � For power production almost only geothermal high enthalpy fields are exploited so far; but their potential is limited throughout Europe. � Power production from geo- thermal low enthalpy resources is only realized in some pro- jects so far. Beside consider- able technical challenges, predominantly economic barriers (i.e. too high costs compared to competing energy sources) hinder their wider use. Source: GGA Hannover

  7. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Reservoir Characteristics - Typical low enthalpy reservoirs (predominantly hot water aquifers) Umea • Area 1: North German Basin Trondheim (characteristic for parts of The Bergen Helsinki Netherlands, Germany, Poland) Petersburg Tallinn Stockholm • Area 2: Upper Rhine Graben Glasgow Goeteborg (characteristic for Riga parts of Germany, France, Kopenhagen Smolensk Vilnius Switzerland) Danzig Minsk Hamburg London Amsterdam • Area 3: Molasse Basin Warschau Berlin Leipzig Brüssel (characteristic for Kiev Paris Frankfurt Prag Luxembourg parts of Germany and Austria) München Bern Wien Odessa Budapest Lyon Mailand Trieste Toulouse Genua Bukarest Marseille 2 Belgrad Heat Flow Values in mW/m mW/m² mW/m² Sarajevo > 150 60 - 80 no data >150 60-80 keine Daten Barcelona Rom Sofia 100 - 150 40 - 60 100-150 40-60 Istanbul 80 - 100 < 40 Neapel Tirana 80-100 <40

  8. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Power Plant Concept - Upper North Molasse Rhine German Basin Graben Basin Borehole depth 2,900 m 3,350 m 4,300 m Brine temperature 150 ° C 120 ° C 150 ° C 130 m 3 /h 300 m 3 /h 100 m 3 /h Flow rate Operating water level 400 m 400 m 400 m under top ground surface Power plant ORC ORC ORC technology Cooling medium Water Water Water Power plant capacity 1.4 MW 1.8 MW 1.1 MW Power plant efficiency 11.5 % 10.2 % 11.5 % design point Full load hours 7,500 h/a 7,500 h/a 7,500 h/a Source: GGA Hannover

  9. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Investments and Operation Costs - Power plant technology: Brine cycle: 0.1 … 2 Mio. € 0.5 … 8 Mio. € 1,700 … 3,000 €/kW el Production pump: 0.1 … 0.4 Mio. € per well: 2 … > 9 Mio. € depth ca. 2,500 … 5,000 m Stimulation: 0.1 … 0.7 Mio. € Drill site: 0.2 ... 1.2 Mio. € Bore hole measurement: 0.2 … 0.4 Mio. € Production tests: 0.1 … 0.7 Mio. €

  10. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Investments and Operation Costs - Norddt. Becken Norddt. Becken risk insurance auxiliary pow er Süddt. Molassebecken Süddt. Molassebecken Oberrheingraben additional charge for Oberrheingraben unforeseen personnel planning pow er plant overhaul, maintenance brine pipeline 0 0,1 0,2 0,3 0,4 0,5 production and injektion Operating Costs in Mio. Euro per year pumps stimulation borehole costs 0 2 4 6 8 10 12 14 16 18 20 Investmentcosts in Mio. Euro

  11. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Shares of the Investments - miscellaneous; 3% Total investments: power plant; 15% 15,4 to 28,2 Mio. € brine pipeline; 5% planning; 3% stimulation; 2% production and injection pumps; 2% boreholes; 70%

  12. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Frame Conditions - Economic Basis Data Depreciation period 30 a Shareholders‘ equity ratio / interest 30 % / 12 % rate Credit capital ratio / interest rate 70 % / 5 % Electricity purchase price 0.07 €/kWh Heat seeling price * 0.032 €/kWh * District Heat Provision Data Flow / return temperature 75 ° C / 55 ° C (low temperature district heating) Heat capacity Upper Rhine Graben 3.0 MW Molasse Basin 7.0 MW North German Basin 2.3 MW Heat full load hours 3,000 h/a

  13. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ���� ���� ������������ �!����� #��������$��� ������� "����� "�����

  14. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ���� �������!������ ���� ������������ �!����� #��������$��� ������� "����� "�����

  15. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ������%�&'����������(����� ���� �������!������ ���� ������������ �!����� #��������$��� ������� "����� "�����

  16. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ������������!�� ������%�&'����������(����� ���� �������!������ ���� ������������ �!����� #��������$��� ������� "����� "�����

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend