t f t t
play

( t ) = f ( ( t ) , t, ) Non-linear, uncertain, system with - PowerPoint PPT Presentation

Robust LFR-based technique for stability analysis of periodic solutions Dimitri PEAUCELLE & Christophe FARGES & Denis ARZELIER LAAS-CNRS - Universit e de Toulouse, FRANCE LAPS - Universit e de Bordeaux I, FRANCE


  1. Robust LFR-based technique for stability analysis of periodic solutions Dimitri PEAUCELLE † & Christophe FARGES ‡ & Denis ARZELIER † † LAAS-CNRS - Universit´ e de Toulouse, FRANCE ‡ LAPS - Universit´ e de Bordeaux I, FRANCE

  2. Introduction Robustness and Non-Linear problems ✪ Robustness: prove stability whatever uncertainties in bounded sets ✪ Lyapunov theory: prove stability whatever initial conditions in bounded sets ➙ Model non-linearities on the states as uncertainties on an LTI model Stability of periodic solutions and periodic systems ✪ Dynamics of relative motion: stability of the origin of periodic system ✪ Numerical methods for periodic systems: sampling ➙ Modeling of sampled uncertainties Outline ① Discrete-time Periodic Uncertain models for stability of periodic solutions ② Linear Matrix Inequality (LMI) results ③ Illustrative example 1 IFAC PSYCO’07, August 2007, St. Petersburg

  3. Linear-Fractional Representation (LFR) η ( t ) = f ( η ( t ) , t, δ ) ˙ Non-linear, uncertain, system with periodic solution: η s ( t ) = f ( η s ( t ) , t, δ ) , ∀ δ ∈ [ δ, δ ] : η s ( t + T ) = η s ( t ) ˙ Quasi-linearization around periodic solution ( x c = η s − η ) x c ( t ) = A c ( t ) x c ( t ) + B c δ ( t ) w δ ( t ) + B c ˙ Ω ( t ) w Ω ( t ) z c δ ( t ) = C c δ ( t ) x c ( t ) + D c δδ ( t ) w δ ( t ) + D c δ Ω ( t ) w Ω ( t ) z c Ω ( t ) = C c Ω ( t ) x c ( t ) + D c Ω δ ( t ) w δ ( t ) + D c ΩΩ ( t ) w Ω ( t ) where uncertainties and non-linearities are feedback connected δ w c δ ( t ) = δz c δ ( t ) Ω (x(t)) w c Ω ( t ) = Ω( x c ( t )) z c Ω ( t ) x(t) = A(t)x(t)... 2 IFAC PSYCO’07, August 2007, St. Petersburg

  4. LFR Hypothesis LMI results for robust stability need quadratic separators T      1  1 ∃ Θ : Υ Θ ( δ 1 ) = Θ  ≤ 0 , ∀ δ ∈ [ δ, δ ]      δ 1 δ 1 ➙ Let Θ the set of all Θ such that this holds. Bounded Ω( x ) for x bounded ✪ HYP 0: Exists a positive definite matrix Q and a matrix Ξ such that T     1 1 x T Qx ≤ γ ⇒ Υ Ξ (Ω( x )) = Ξ  ≤ 0        Ω( x ) Ω( x ) ➙ For given Q and γ , let Ξ γ the set of all Ξ such that HYP 0 holds. ➙ Based on HYP 0, non-linearities may be treated as if uncertainties. 3 IFAC PSYCO’07, August 2007, St. Petersburg

  5. Illustrative Example [Jordan & Smith 1987] η 1 + ( η 2 η 2 ¨ 1 + ˙ 1 − 1) ˙ η 1 + η 1 = u Non-linear system with uncertain control input u ( t ) = ( κ + δ )(cos t − η 1 ( t )) ⇒ η s 1 ( t ) = cos t x c 1 = η s 1 − η 1 , x c x c 2 = ˙ LFR around periodic solution 1     0 1 0  B c A c ( t ) = δ =    − 1 − κ + sin 2 t cos 2 t − 1 − 1   0 0 0 0 B c Ω ( t ) =   − sin t 2 cos t − 3 sin t − 1   � � C c D c D c x c δ = δδ = 0 δ Ω = 0 0 1 0 1    x c  0   2 Ω( x c ) =       x c 0  1 0   2 C c D c D c Ω = Ω δ = 0 ΩΩ = 0      x c 2 1 + x c 2 0 0 1 2 4 IFAC PSYCO’07, August 2007, St. Petersburg

  6. Sampling of the LFT model Periodic sampling strategy ✪ Sampling sequence { T s ( k ) } k ≥ 0 : T s ( N ) = T , T s ( k + N ) = T s ( k ) x ( k ) = x c ( T s ( k )) , w δ ( k ) = w c Ω( k ) = Ω( x c ( T s ( k ))) δ ( T s ( k )) . . . ✪ HYP 1: median approximation of LTI model A ( k ) = A c (1 ∀ t ∈ [ T s ( k ) , T s ( k +1)] : A c ( t ) ≃ ˜ 2( T s ( k )+ T s ( k +1))) . . . ✪ HYP 2: first-order hold approximation of exogenous signals [Imbert 2001] t − T s ( k ) w c δ ( t ) ≃ w δ ( k ) + T s ( k + 1) − T s ( k )( w δ ( k + 1) − w δ ( k )) . . . ✪ HYP 3: β -bounded growth of the state x over sampling period ( β ≥ 1 ) x T ( k ) Qx ( k ) ≤ q ⇒ x T ( k + 1) Qx ( k + 1) ≤ βq 5 IFAC PSYCO’07, August 2007, St. Petersburg

  7. Discrete-time LFR-model HYP 0-3 : T -periodic continuous ⇒ N -periodic discrete δ δ (t) Ω (k) Ω (k+1) Ω T (k) s x(t) = A(t)x(t)... x(k+1)=A(k)x(k)... x ( k + 1) = A ( k ) x ( k ) + B δ ( k ) ˜ w δ ( k ) + B Ω ( k ) ˜ w Ω ( k ) w δ ( k ) = δ ˜ ˜ z δ ( k ) z δ ( k ) = C δ ( k ) x ( k ) + D δδ ˜ ˜ w δ ( k ) + D δ Ω ( k ) ˜ w Ω ( k ) w ω ( k ) = ˜ ˜ Ω( k )˜ z Ω ( k ) z Ω ( k ) = C Ω ( k ) x ( k ) + D Ω δ ˜ ˜ w δ ( k ) + D ΩΩ ( k ) ˜ w Ω ( k )    with Υ Ξ ∈ Ξ q (Ω( k )) ≤ 0  Ω( k ) 0 ˜ if x T ( k ) Qx ( k ) ≤ q . Ω = 0 Ω( k + 1) Υ ˆ Ξ ∈ Ξ βq (Ω( k + 1)) ≤ 0 6 IFAC PSYCO’07, August 2007, St. Petersburg

  8. Invariant set - LMI results Invariant sets x T Qx ≤ q : If there exist Ξ( k ) ∈ Ξ q , ˆ Ξ( k ) ∈ Ξ βq , Θ( k ) ∈ Θ that satisfy for all k = 1 . . . N the LMIs N T δ ( k )Θ( k ) N δ ( k )    Q 0 N T x ( k )  N x ( k ) < + N T Ω ( k )Ξ( k ) N Ω ( k )   − Q 0 + ˆ Ω ( k )ˆ Ξ( k ) ˆ N T N Ω ( k ) where N x , N δ , N Ω and ˆ N Ω matrices are functions of model matrices A, B δ . . . then for any bounded initial conditions such that x T (0) Qx (0) ≤ q the trajectory remains bounded such that x T ( k ) Qx ( k ) ≤ q . 7 IFAC PSYCO’07, August 2007, St. Petersburg

  9. Asymptotic stability - LMI results Convergence to periodic solution for initial conditions x T ˆ Qx ≤ q : If there exist P ( k ) ≥ 0 , Ξ( k ) ∈ Ξ q , ˆ Ξ( k ) ∈ Ξ βq , Θ( k ) ∈ Θ that satisfy for all k = 1 . . . N the LMIs ˆ Q ( k ) = Q + P ( k ) > 0 N T δ ( k )Θ( k ) N δ ( k )   ˆ Q ( k ) 0 N T x ( k )  N x ( k ) < + N T Ω ( k )Ξ( k ) N Ω ( k )   − ˆ  Q ( k ) 0 + ˆ Ω ( k )ˆ Ξ( k ) ˆ N T N Ω ( k ) then for any bounded initial conditions such that x T (0) ˆ Q (0) x (0) ≤ q the trajectory satisfies invariance x T ( k ) Qx ( k ) ≤ x T ( k ) ˆ Q ( k ) x ( k ) ≤ q decreasing Lyapunov function x T ( k +1) ˆ Q ( k +1) x ( k +1) ≤ x T ( k ) ˆ Q ( k ) x ( k ) and convergence to the periodic solution x ( k ) = η s ( k ) − η ( k ) → 0 . 8 IFAC PSYCO’07, August 2007, St. Petersburg

  10. LMI conservative representations of separators Need for tools to choose Θ ∈ Θ and Ξ ∈ Ξ γ If Θ satisfies the LMIs Vertex separator: T      0  0  ≥ 0 , Υ Θ ( δ 1 ) ≤ 0 , Υ Θ ( δ 1 ) ≤ 0 Θ  1 1 then Θ ∈ Θ ( i.e. Υ Θ ( δ 1 ) ≤ 0 ∀ δ ∈ [ δ, δ ] ) LMIs conditions of Ξ for Υ Ξ (Ω( x )) ≤ 0 whatever x T Qx ≤ γ ?   x 1 0    0  x 2   with x T Qx = x T x = x 2 1 + x 2 Example: Ω( x ) = 2 .     0 x 2       x 2 1 + x 2 0 2 9 IFAC PSYCO’07, August 2007, St. Petersburg

  11. LMI conservative representations of separators Take Ξ structured as   − γ ( α 1 + α 4 ) − γ ( α 2 + α 5 ) 0 0 0 α 2    − γ ( α 2 + α 5 ) − γ (2 α 3 + α 6 + γα 7 ) 0 0 0  α 3       0 0 0 0 0 α 1   Ξ =     0 0 0 α 1 + α 4 α 5 0       0 0 0 α 5 α 6 0       0 0 0 α 2 α 3 α 7        0 0  α 1 α 2  α 4 α 5  ≥ 0 , Ξ 2 =  ≥ 0 , Ξ 3 =  ≥ 0 Ξ 1 = 2 α 3 0 α 2 α 5 α 6 α 7 then 2 ) 2 − γ 2 )Ξ 3 ≤ 0 Υ Ξ (Ω( x )) = ( x 2 1 + x 2 2 − γ )Ξ 1 + ( x 2 2 − γ )Ξ 2 + (( x 2 1 + x 2 for all x T Qx = x T x = x 2 1 + x 2 2 ≤ γ . 10 IFAC PSYCO’07, August 2007, St. Petersburg

  12. Results for the example η 1 + ( η 2 η 2 ¨ 1 + ˙ 1 − 1) ˙ η 1 + η 1 = u Non-linear system with uncertain control input u ( t ) = ( κ + δ )(cos t − η 1 ( t )) ⇒ η s 1 ( t ) = cos t Tests made for control gain κ = 4 . 5 and δ = − δ = 0 . 5 uncertainty. LMI tests LMIs solved for N = 20 samples per period (uniformly spaced), β = 1 . 5 (assumed bound on state growth over one sample) and various values of q : feasible for all q ≤ q max = 0 . 056 . When taking β = 1 . 1 then q max = 0 . 061 . Computation time (YALMIP+SeDuMi, 3GHz+1GB) ≃ 1 . 4 sec. 11 IFAC PSYCO’07, August 2007, St. Petersburg

  13. Simulations for η 1 (0) = 0 . 78 , 0 . 91 and 1 . 09 ! $"# ! % $ ! $"# ! ! ! !"# ! ! ! $"# $ $"# ! ! ! 12 IFAC PSYCO’07, August 2007, St. Petersburg

  14. Conclusions ➙ Methodology to analyze robust stability of periodic trajectories ➙ HYP 3 on bounded growth of the state embeds errors due to sampling ➚ LMI type results provide access to efficient numerical tools ➘ Results are conservative ➚ State-feedback design and others may be considered as well ➘ Difficulties to describe the sets Ξ via LMIs. 13 IFAC PSYCO’07, August 2007, St. Petersburg

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend